• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.031 seconds

Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion (고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동)

  • Yoon, Eun-Yoo;Chae, Hong-Jun;Kim, Taek-Soo;Lee, Chong-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.190-196
    • /
    • 2010
  • In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.

Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction (고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구)

  • Kim, Se-Hun;Park, No-Kuk;Lee, Tae-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

Reynolds Number Effects on Aerodynamic Characteristics of Compressor Cascades for High Altitude Long Endurance Aircraft

  • Kodama, Taiki;Watanabe, Toshinori;Himeno, Takehiro;Uzawa, Seiji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.195-201
    • /
    • 2008
  • In the jet engines on the aircrafts cruising at high altitude over 20 km and subsonic speed, the Reynolds number in terms of the compressor blades becomes very low. In such an operating condition with low Reynolds number, it is widely reported that total pressure loss of the air flow through the compressor cascades increases dramatically due to separation of the boundary layer and the secondary-flow. But the detail of flow mechanisms causes the total pressure loss has not been fully understood yet. In the present study, two series of numerical investigations were conducted to study the effects of Reynolds number on the aerodynamic characteristics of compressor cascades. At first, the incompressible flow fields in the two-dimensional compressor cascade composed of C4 airfoils were numerically simulated with various values of Reynolds number. Compared with the corresponding experimental data, the numerically estimated trend of total pressure loss as a function of Reynolds number showed good agreement with that of experiment. From the visualized numerical results, the thickness of boundary layer and wake were found to increase with the decrease of Reynolds number. Especially at very low Reynolds number, the separation of boundary layer and vortex shedding were observed. The other series, as the preparatory investigation, the flow fields in the transonic compressor, NASA Rotor 37, were simulated under the several conditions, which corresponded to the operation at sea level static and at 10 km of altitude with low density and temperature. It was found that, in the case of operation at high altitude, the separation region on the blade surface became lager, and that the radial and reverse flow around the trailing edge become stronger than those under sea level static condition.

  • PDF

High Speed Direct Bonding of Silicon Wafer Using Atmospheric Pressure Plasma (상압 플라즈마를 이용한 고속 실리콘 웨이퍼 직접접합 공정)

  • Cha, Yong-Won;Park, Sang-Su;Shin, Ho-Jun;Kim, Yong Taek;Lee, Jung Hoon;Suh, Il Woong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.31-38
    • /
    • 2015
  • In order to achieve a high speed and high quality silicon wafer bonding, the room-temperature direct bonding using atmospheric pressure plasma and sprayed water vapor was developed. Effects of different plasma fabrication parameters, such as flow rate of $N_2$ gas, flow rate of CDA (clear dry air), gap between the plasma head and wafer surface, and plasma applied voltage, on plasma activation were investigated using the measurements of the contact angle. Influences of the annealing temperature and the annealing time on bonding strength were also investigated. The bonding strength of the bonded wafers was measured using a crack opening method. The optimized condition for the highest bonding strength was an annealing temperature of $400^{\circ}C$ and an annealing time of 2 hours. For the plasma activation conditions, the highest bonding strength was achieved at the plasma scan speed of 30 mm/sec and the number of plasma treatment of 4 times. After optimization of the plasma activation conditions and annealing conditions, the direct bonding of the silicon wafers was performed. The infrared transmission image and the cross sectional image of bonded interface indicated that there is no void and defects on the bonded wafers. The bonded wafer exhibited a bonding strength of average $2.3J/m^2$.

Study of Catalytic Filter on the Removal of Dust and HVOC (촉매필터를 이용한 먼지 및 HVOC 제거 특성 연구)

  • Jeong, Soon Kwan;Park, Young Ok
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.80-85
    • /
    • 2008
  • Catalytic filter is capable of performing shallow bed dust filtration plus a catalytic reaction, promoted by a catalyst deposited in its inner structure. Such a feature may allow potential cost and space reduction in several environmental applications. Dust filtration and halogenated volatile organic compound (1,2-dichlorobenzene) destruction were carried out in a lab-scale reactor. $WO_3-V_2O_5/TiO_2$ supplied by MaGreen, which showed high catalytic acitivity at low temperature, was used as a catalyst. P-84 that can be operated under $250^{\circ}C$ was used as a felt. The catalytic activity and filtration efficiency of catalytic filters were investigated under the operating conditions, including temperature, face velocity, and dust concentration. The catalytic activity of catalytic filter increased with increasing temperature and the amount of catalyst loaded. The test results showed that the filtration efficiency was primarily affected by the face velocity. Pressure drop variations as a function of time were investigated for a variety of conditions. In case of virgin filter, a dramatic decrease in the pulse interval and a slightly increase in the base line pressure drop were observed. A relatively slow pressure drop build-up was recorded for the catalytic filter due to smooth and slippery surface characteristics of nanofiber. The catalytic filter indicated that high filtration efficiency over 99.98% and high catalytic activity over 90% at 1 m/min and $210^{\circ}C$.

Inhibition of ENNG-Induced Pyloric Stomach and Small Intestinal Carcinogenesis in Mice by High Temperature- and Pressure-Treated Garlic

  • Kaneko, Takaaki;Shimpo, Kan;Chihara, Takeshi;Beppu, Hidehiko;Tomatsu, Akiko;Shinzato, Masanori;Yanagida, Takamasa;Ieike, Tsutomu;Sonoda, Shigeru;Futamura, Akihiko;Ito, Akihiro;Higashiguchi, Takashi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1983-1988
    • /
    • 2012
  • High temperature- and pressure-treated garlic (HTPG) has been shown to have enhanced antioxidative activity and polyphenol contents. Previously, we reported that HTPG inhibited 1,2-dimethylhydrazine-induced mucin depleted foci (premalignant lesions) and $O^6$-methylguanine DNA adduct formation in the rat colorectum. In the present study, we investigated the modifying effects of HTPG on N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG)-induced pyloric stomach and small intestinal carcinogenesis in mice. Male C57BL/6 mice were given ENNG (100 mg/l) in drinking water for the first 4 weeks, then a basal diet or diet containing 2% or 5% HTPG for 30 weeks. The incidence and multiplicity of pyloric stomach and small intestinal (duodenal and jejunal) tumors in the 2% HTPG group (but not in the 5% HTPG group) were significantly lower than those in the control group. Cell proliferation of normal-appearing duodenal mucosa was assessed by MIB-5 immunohistochemistry and shown to be significantly lower with 2% HTPG (but again not 5% HTPG) than in controls. These results in dicate that HTPG, at 2% in the diet, inhibited ENNG-induced pyloric stomach and small intestinal (especially duodenal) tumorigenesis in mice, associated with suppression of cell proliferation.

Reaction Rate Analysis of CO2 Gasification for Indonesian Coal Char at High Temperature and Elevated Pressure (고온, 고압조건에서의 인도네시아 석탄촤의 CO2 가스화 반응)

  • Lisandy, Kevin Yohanes;Kim, Ryang-Gyoon;Hwang, Chan-Won;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.781-787
    • /
    • 2014
  • A pressurized wire mesh heating reactor (PWMR) can provide high pressure and temperature experimental conditions up to 50 atm and 1750 K, respectively. This equipment was developed to evaluate the intrinsic reaction kinetics of $CO_2$ gasification. A PWMR utilizes a platinum (Pt) wire mesh resistance to generate heat with a direct current (DC) electricity supply. This DC power supply can then be controlled by computer software to reach the exact expected terminal temperature and heating period. In this study, BERAU (sub-bituminous Indonesian coal) was pulverized then converted into char with a particle size of $90-150{\mu}m$. This was used in experiments with various pressures (1-40 atm) and temperatures (1373-1673 K) under atmospheric conditions. The internal and external effectiveness factor was analyzed to determine the effects of high pressure. The intrinsic reaction kinetics of BERAU char was obtained using $n^{th}$ order reaction rate equations. The value was determined to be 203.8kJ/mol.

Performance of High Temperature Filter System for Radioactive Waste Vitrification Plant (방사성폐기물 유리화 플랜트 고온여과시스템의 성능 특성)

  • Seung-Chul, Park;Tae-Won, Hwang;Sang-Woon, Shin;Jong-Hyun, Ha;Hey-Suk, Kim;So-Jin, Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Important operation parameters and performance of a high temperature ceramic candle filter system were evaluated through a series of demonstration tests at a pilot-scale vitrification plant. At the initial period of each test, due to the growth of dust cake on the surface of ceramic candles, the pressure drop across the filter media increased sharply. After that it became stable to a certain range and varied continuously proportion to the face velocity of off-gas. On the contrary, at the initial period of each test, the permeability of filter element decreased rapidly and then it became stable. Back flushing of the filter system was effective under the back flushing air pressure range of 3∼5 bar. Based on the dust concentrations measured by iso-kinetic dust sampling at the inlet and outlet point of HTF, the dust collection efficiency of HTF evaluated. The result met the designed performance value of 99.9%. During the demonstration tests including a hundred hour long test, no specific failure or problem affecting the performance of HTF system were observed.

  • PDF

Synoptic Meteorological Classification and Analysis of Precipitation Characteristics in Gimhae Region Using 2DVD and Parsivel (2DVD와 Parsivel 이용한 김해지역 강수사례일의 종관기상학적 분류 및 강수 특성 분석)

  • Cheon, Eun-Ji;Park, Jong-Kil;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.289-302
    • /
    • 2017
  • During the research period, error analysis of the amount of daily precipitation was performed with data obtained from 2DVD, Parsivel, and AWS, and from the results, 79 days were selected as research days. According to the results of a synoptic meteorological analysis, these days were classified into 'LP type, CF type, HE type, and TY type'. The dates showing the maximum daily precipitation amount and precipitation intensity were 'HE type and CF type', which were found to be attributed to atmospheric instability causing strong ascending flow, and leading to strong precipitation events. Of the 79 days, most days were found to be of the LP type. On July 27, 2011 the daily precipitation amount in the Korean Peninsula reached over 80 mm (HE type). The leading edge of the Northern Pacific high pressure was located over the Korean Peninsula with unstable atmospheric conditions and inflow of air with high temperature and high humidity caused ascending flow, 120 mm/h with an average precipitation intensity of over 9.57 mm/h. Considering these characteristics, precipitation in these sample dates could be classified into the convective rain type. The results of a precipitation scale distribution analysis showed that most precipitation were between 0.4-5.0 mm, and 'Rain' size precipitation was observed in most areas. On July 9, 2011, the daily precipitation amount was recorded to be over 80 mm (CF type) at the rainy season front (Jangma front) spreading across the middle Korean Peninsular. Inflow of air with high temperature and high humidity created unstable atmospheric conditions under which strong ascending air currents formed and led to convective rain type precipitation.