DOI QR코드

DOI QR Code

Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion

고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동

  • Yoon, Eun-Yoo (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology)) ;
  • Chae, Hong-Jun (Eco-Materials and Processing department, Korea Institute of Industrial Technology) ;
  • Kim, Taek-Soo (Eco-Materials and Processing department, Korea Institute of Industrial Technology) ;
  • Lee, Chong-Soo (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology)) ;
  • Kim, Hyoung-Seop (Department of Materials Science and Engineering, POSTECH (Pohang University of Science and Technology))
  • 윤은유 (포항공과대학교 신소재공학과) ;
  • 채홍준 (한국생산기술연구소 에코공정연구부) ;
  • 김택수 (한국생산기술연구소 에코공정연구부) ;
  • 이종수 (포항공과대학교 신소재공학과) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2010.03.12
  • Accepted : 2010.04.26
  • Published : 2010.06.28

Abstract

In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.

Keywords

References

  1. E. Abe, Y. Kawamura, K. Hayashi and A. Inoue: Acta Mater., 50 (2002) 3845. https://doi.org/10.1016/S1359-6454(02)00191-X
  2. K. T. Kwon, S. B. Kang and C. G. Kang: Trans. Mater. Process., 17 (2008) 586. https://doi.org/10.5228/KSPP.2008.17.8.586
  3. S. H. Kim, K. D. Park, J. H. Jang, K. T. Kim, H. W.Lee, G. A. Lee, K. P. Kim and Y. S. Lee: Trans. Mater. Process., 17 (2008) 466. https://doi.org/10.5228/KSPP.2008.17.7.466
  4. M. H. Lee, K. K. Kim, H. Y. Kim and S. I. Oh: Trans. Mater. Process., 17 (2008) 501. https://doi.org/10.5228/KSPP.2008.17.7.501
  5. J. G. Park, B. S. You and Y. S. Kim: Trans. Mater. Process.,17 (2008) 412. https://doi.org/10.5228/KSPP.2008.17.6.412
  6. Y. G. Ko, Y. M. Kim, S. Namgung and D. H. Shin:Trans. Mater. Process., 18 (2009) 625. https://doi.org/10.5228/KSPP.2009.18.8.625
  7. D. M. Kang, J. O. An and M. C. Kang: Trans. Mater. Process., 18 (2009) 342. https://doi.org/10.5228/KSPP.2009.18.4.342
  8. J. H. Jung, Y. S. Lee, Y. N. Kwon and J. H. Lee: Trans. Mater. Process., 17 (2008) 473. https://doi.org/10.5228/KSPP.2008.17.7.473
  9. S. W. Kim, Y. S. Lee, Y. N. Kwon and J. H. Lee:Trans. Mater. Process., 17 (2008) 373. https://doi.org/10.5228/KSPP.2008.17.5.373
  10. J. Cai, G. C. Ma, Z. Liu, H. F. Zhang and Z. Q. Hu: J. Alloy. Comp., 422 (2006) 92. https://doi.org/10.1016/j.jallcom.2005.11.054
  11. M. Suzuki, T. Kimura, J. Koike and K. Maruyama:Scripta Mater., 48 (2003) 997. https://doi.org/10.1016/S1359-6462(02)00590-0
  12. S. M. He, X. Q Zeng, L. M. Peng, X. Gao, J. F. Nieand W. J. Ding: J. Alloys Compd., 427 (2007) 316. https://doi.org/10.1016/j.jallcom.2006.03.015
  13. J. Zhang, X. Niu, X. Qiu, K. Liu, C. Nan, D. Tang andJ. Meng: J. Alloys Compd., 471 (2009) 322. https://doi.org/10.1016/j.jallcom.2008.03.089
  14. Y. Kawamura, K. Hayashi, A. Inoue and T. Masumoto: Mater Trans., 42 (2001) 1301. https://doi.org/10.2320/matertrans.42.1301
  15. D. H. Bae, S. H. Kim, W. T. Kim and D. H. Kim:Mater. Trans., 42 (2001) 2144. https://doi.org/10.2320/matertrans.42.2144
  16. S.-Y. Chang, S.-W. Lee, K. M. Kang, S. Kamado andY. Kojima: Mater. Trans., 45 (2004) 488. https://doi.org/10.2320/matertrans.45.488
  17. S. R. Agnew, J. A. Horton, T. M. Lillo and D. W.Brown: Scripta Mater., 50 (2004) 377. https://doi.org/10.1016/j.scriptamat.2003.10.006
  18. D. W. Brown, S. R. Agnew, M. A. M. Bourke, T. M.Holden, S. C. Vogel and C. N. Tome: Mater. Sci. Eng. A, 399 (2005) 1. https://doi.org/10.1016/j.msea.2005.02.016
  19. J. Cai, G. C. Ma, Z. Liu, H. F. Zhang and Z. Q. Hu: J. Alloy. Comp., 422 (2006) 92. https://doi.org/10.1016/j.jallcom.2005.11.054
  20. M. Nishida, Y. Kawamura and T. Yamamoto: Mater. Sci. Eng. A, 375-377 (2004) 1217. https://doi.org/10.1016/j.msea.2003.10.145
  21. E. W. Wong, P. E. Sheehan and C. M. Lieber: Science,277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
  22. A. Manedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P.Wicksted and A. Hirsc: Nature Mater., 1 (2002) 190. https://doi.org/10.1038/nmat747
  23. E. T. Thostenson, Z. Ren and T. W. Chou: Compos. Sci. Technol., 61 (2001) 1899. https://doi.org/10.1016/S0266-3538(01)00094-X
  24. S. C. Yoon, S. J. Hong, M. H. Seo, Y. G. Jeong and H.S. Kim: J. Kor. Powder Metall. Inst., 11 (2004) 233. https://doi.org/10.4150/KPMI.2004.11.3.233
  25. H. S. Kim and D. N. Lee: Mater. Trans., 45 (2004)1829. https://doi.org/10.2320/matertrans.45.1829
  26. J. Robertson, J. T. Im, I. Karaman, K. T. Hartwig andI. E. Anderson: J. Non-Cryst. Solids, 317 (2003) 114.
  27. S. C. Yoon and H. S. Kim: Mater. Sci. Forum, 503-504(2006) 221. https://doi.org/10.4028/www.scientific.net/MSF.503-504.221
  28. E. W. Wong, P. E. Sheehan and C. M. Lieber: Science,277 (1997) 1971. https://doi.org/10.1126/science.277.5334.1971
  29. A. Manedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P.Wicksted and A. Hirsch: Nature Mater., 1 (2002) 190. https://doi.org/10.1038/nmat747
  30. S. J. Hong, T. S. Kim, H. S. Kim, W. T. Kim and B. S.Chun: Mater. Sci. and Eng. A, 271 (1999) 469. https://doi.org/10.1016/S0921-5093(99)00317-2
  31. H. S. Kim: Mater. Sci. Eng. A, 315 (2001) 122. https://doi.org/10.1016/S0921-5093(01)01188-1
  32. B. S. Moon, H. S. Kim and S. I. Hong: Scripta Mater.,46 (2002) 131. https://doi.org/10.1016/S1359-6462(01)01209-X
  33. T.-S. Kim: J. Alloys Compd., (2010) in press.

Cited by

  1. Densification and Nanocrystallization of Water-Atomized Pure Iron Powder Using High Pressure Torsion vol.18, pp.5, 2011, https://doi.org/10.4150/KPMI.2011.18.5.411
  2. Ultrafine Grained Cu-diamond Composites using High Pressure Torsion vol.19, pp.3, 2012, https://doi.org/10.4150/KPMI.2012.19.3.204
  3. Trend in Research of Powder Consolidation Using Severe Plastic Deformation vol.20, pp.2, 2013, https://doi.org/10.4150/KPMI.2013.20.2.148