DOI QR코드

DOI QR Code

Direct Observation on the Low Temperature Degradation Due to Surface Treatment in Y-TZP

Y-TZP에서 표면 처리에 따른 저온열화 거동의 직접적 관찰

  • Chung, Tai-Joo (School of Materials Science and Engineering, Center of Biomedical Materials and Biotechnology, Andong National University) ;
  • Kim, Hye-Sung (Department of Nanomaterials Engineering, College of Nanoscience & Nanotechnology, Pusan National University)
  • 정태주 (국립안동대학교 신소재공학부, 의료.바이오소재연구센터) ;
  • 김혜성 (국립부산대학교 나노소재공학과)
  • Received : 2010.03.24
  • Accepted : 2010.05.03
  • Published : 2010.06.28

Abstract

Low temperature degradation behavior in yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics was microscopically observed from the phase contrast between monoclinic surface and tetragonal matrix. The degradation behavior was dependent on the surface treatment of sintered Y-TZP, even if the sintering history is same. In the mirror polished specimen, the monoclinic layer appeared in a uniform thickness from the surface. On the contrary, for the specimen with coarse scratch, the thickness of degraded surface was more than double especially from the coarse scratch. Since the scratch results in local deformation, the residual stress should be induced around the scratch. With the transformation from tetragonal to monoclinic, the volume expansion exerts a stress on a neighboring grains and promotes a successive phase transformation. Such a autocatalytic effect can be triggered from the part of coarse scratch.

Keywords

References

  1. W. R. Cannon: Treatise on Materials Science and Technology, 29 (1989) 195. https://doi.org/10.1016/B978-0-12-341829-6.50010-4
  2. S. H. Chu and M. A. Seitz: J. Solid State Chem., 23(1978) 297. https://doi.org/10.1016/0022-4596(78)90078-6
  3. A. P. Santos, R. Z. Domingues and M. Kleitz: J. Euro. Ceram. Soc., 18 (1998) 1571. https://doi.org/10.1016/S0955-2219(98)00017-X
  4. N. Claussen: Science and Technology of Zirconia II,N. Claussen, M. Rühle, and A. H. Heuer (Ed.),Advances in Ceramics, Vol. 12 American Ceramic Society, Columbus, OH. (1984) 325.
  5. I. Nettleship and R. Stevens: Int. J. High Technology Ceramics, 3 (1987) 1. https://doi.org/10.1016/0267-3762(87)90060-9
  6. S. Lio, M. Watanabe, K. Kuroda, H. Saka and T. Imura: Science and Technology of Zirconia III, S. Somiya, N. Yamamoto, and H. Hanagita (Ed.), Advances in Ceramics, Vol. 24A American Ceramic Society, Westerville, OH. (1988) 49.
  7. T. Sato and M. Shimada: J. Am. Ceram. Soc., 68(1985) 356. https://doi.org/10.1111/j.1151-2916.1985.tb15239.x
  8. T. Sato and M. Shimada: J. Mater. Sci., 20 (1985)3988. https://doi.org/10.1007/BF00552389
  9. T. Arai, T. Yamamoto and K. Tsuji: Science and Technology of Zirconia III, S. Somiya, N. Yamamoto, andH. Hanagita (Ed.), Advances in Ceramics, Vol. 24AAmerican Ceramic Society, Westerville, OH. (1988)517.
  10. T. Sato and M. Shimada: J. Am. Ceram. Soc., 67(1984) c-212.
  11. P. J. Whalen, F. Reidinger and R. F. Antrim: J. Am. Ceram. Soc., 72 (1989) 319. https://doi.org/10.1111/j.1151-2916.1989.tb06124.x
  12. H. Schubert, N. Claussen and M. Rühle: Proc. Br. Ceram. Soc., 34 (1984) 157.
  13. N. Claussen, R. Wagner, L. J. Gauckler and G. Petzow:J. Am. Ceram. Soc., 61 (1978) 369.
  14. T.-J. Chung, H. Song, G.-H. Kim and D.-Y. Kim: J. Am. Ceram. Soc., 80 (1997) 2607.
  15. T.-J. Chung, J.-S. Lee, D.-Y. Kim and H. Song: J. Am. Ceram. Soc., 82 (1999) 3193.
  16. T.-J. Chung, J.-S. Lee, D.-Y. Kim G.-H. Kim, and H.Song: J. Am. Ceram. Soc., 84 (2001) 172. https://doi.org/10.1111/j.1151-2916.2001.tb00626.x
  17. T.-J. Chung, S.-S. Ahn, E.-W. Song, K.-S. Oh, J.-S.Lee and Y.-S. Kim: J. Kor. Powder Metall. Inst., 13(2006) 360 (Korean). https://doi.org/10.4150/KPMI.2006.13.5.360
  18. J.-H. Han and D.-Y. Kim: Acta Metall. Mater., 43(1995) 3185. https://doi.org/10.1016/0956-7151(95)00007-I
  19. R. C. Garvie and P. S. Nicholson: J. Am. Ceram., 55(1972) 303. https://doi.org/10.1111/j.1151-2916.1972.tb11290.x