• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.034 seconds

Time variation characteristic of pulse-modulated high frequency plasma (펄스 모듈레이션된 고주파 플라즈마의 시변 특성)

  • Lee, S.H.;Lee, D.S.;Jo, Y.S.;Kim, D.H.;Lee, H.J.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1817-1819
    • /
    • 2004
  • From the plasma application point of view, electron temperature and density are one of the most important parameters for plasma process. But it is only available to control plasma by adjusting external factors like gas pressure and input power. In this paper, pulse-modulated plasma is generated by modulating 13.56GHz RF power with 1, 5, 10kHz pulse. And Langmuir probe technique is used to study the distribution of electron temperature and density. When modulated pulse is off, electron temperature decreases gradually in form of exponential decay. The value t of exponential decay slope is 33.619, 13.834, 10.803 in 1kHz. 5kHz. 10kHz. This implies that this method can be used to control electron temperature and density.

  • PDF

A Study on Visual Clarity According to Color Temperature and Color Rendering of Light Sources (각종 광원의 색온도, 연색성과 밝은 느낌에 대한 실험적 연구)

  • 이진우;지철근;조경애
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • We studied visual clarity according to the difference of color temperature and color rendering by using black and white printed paper and four sheets of colored paper under different kinds of lamps and same kind lamps. The results show visual clarity is proportioned to average color rendering index approximately except incandescent lamps and to color temperature under incandescent lamps, fluorescent lamps, high pressure sodium lamps, metal halide lamps and electrode less discharge lamps.

Fracture Resistance Characteristics of SA516-Gr.70 Steel Plate for RCS Piping Elbow and Support Skirt (원자로 냉각재배관 엘보우 및 서포트 스컷트용)

  • Son, Jong-Dong;Lim, Man-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.49-54
    • /
    • 2006
  • The evaluation of elastic-plastic fracture characteristic was investigated in ferrite steel SA 516- Gr70 used for reactor coolant piping elbow and support skirt of pressure vessels. This paper describes the effect of temperature on J-R curve characteristic of this material. The elastic-plastic fracture mechanics parameter J is obtained with unloading compliance method. The test method were analyzed according to ASTM E 813-89 and E 1152-89. Unloading compliance $J_{IC}$ tests were performed on 1 CT specimens at varied temperatures from $25^{\circ}C$ to about $400^{\circ}C$ using a high temperature extensometer. At all temperature, valid $J_{IC}$ measurements could be made and $J_{IC}$ decreased with increasing temperature. SEM fractography schematically illustrates microvoid initiation, growth and coalescence at the tip of a preexisting crack.

Study on Combustion and Explosion Hazard of Rice Bran Dusts (쌀겨 분진의 연소 및 폭발 위험성에 관한 연구)

  • 이창우;현성호;이한철;허윤행
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.93-98
    • /
    • 1999
  • We had investigated combustion properties of rice bran dusts. Decomposition of rice bran dusts with temperature were investigated using DSC and the weight loss according to temperature using TGA in order to find the thermal hazard of rice bran dusts, and the properties of dust explosion in variation of their dust with the same particle size. Using Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after making dust disperse by compressed air, dust explosion experiments have been conducted by varying concentration and size of rice bran dust.According to the results for thermodynamic stability of rice bran dust, there are little change of initiation temperature of heat generation and heating value for used particle size. But initiation temperature of heat generation decreased with high heating rate whereas decomposition heat increased with particle size. Average maximum explosion pressure was $10kgf/cm^2$ for 60/70 mesh and $1.5mg/cm^2$ dust concentration.

  • PDF

FRAPCON analysis of cladding performance during dry storage operations

  • Richmond, David J.;Geelhood, Kenneth J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.306-312
    • /
    • 2018
  • There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to $400^{\circ}C$ for high-burnup (>45 GWd/mtU) fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at $400^{\circ}C$. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

Low Temperature Bonding Process of Silicon and Glass using Spin-on Glass (Spin-on Glass를 이용한 실리콘과 유리의 저온 접합 공정)

  • Lee Jae-Hak;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.77-86
    • /
    • 2005
  • Low temperature bonding of the silicon and glass using the Spin-on Glass (SOG) has been conducted experimentally to figure out the effects of the SOG solution composition and process variables on bond strength using the Design of Experiment method. In order to achieve the high quality bond interface without rack, sufficient reaction time of the optimal SOG solution composition is needed along with proper pressure and annealing temperature. The shear strength under the optimal SOG solution composition and process condition was higher than that of conventional anodic bonding and similar to that of wafer direct bonding.

Thermal-hydraulic behavior simulations of the reactor cavity cooling system (RCCS) experimental facility using Flownex

  • Marcos S. Sena;Yassin A. Hassan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3320-3325
    • /
    • 2023
  • The scaled water-cooled Reactor Cavity Cooling System (RCCS) experimental facility reproduces a passive safety feature to be implemented in Generation IV nuclear reactors. It keeps the reactor cavity and other internal structures in operational conditions by removing heat leakage from the reactor pressure vessel. The present work uses Flownex one-dimensional thermal-fluid code to model the facility and predict the experimental thermal-hydraulic behavior. Two representative steady-state cases defined by the bulk volumetric flow rate are simulated (Re = 2,409 and Re = 11,524). Results of the cavity outlet temperature, risers' temperature profile, and volumetric flow split in the cooling panel are also compared with the experimental data and RELAP system code simulations. The comparisons are in reasonable agreement with the previous studies, demonstrating the ability of Flownex to simulate the RCCS behavior. It is found that the low Re case of 2,409, temperature and flow split are evenly distributed across the risers. On the contrary, there's an asymmetry trend in both temperature and flow split distributions for the high Re case of 11,524.

A Smart Sensor System with a Programmable Temperature Compensation Technique (프로그래머블한 온도 보상 기법의 스마트 센서 시스템)

  • Kim, Ju-Hwan;Kang, Yu-Ri;Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, a smart sensor system for the MEMS pressure sensor was developed. A compensation algorithm and programmable calibration circuits were presented to eliminate errors caused by temperature drift of piezoresistive pressure sensors in itself. This system consisted of signal conditioning, calibration, temperature detection, microprocessor, and communication parts and these were integrated into a SOC. A RS-232 interface was employed for monitoring and control of a smart sensor system. The area of fabricated IC is $4.38{\times}3.78\;mm^2$ and a $0.35{\mu}m$ high voltage CMOS process was used. Compensation error for temperature drift of 50 KPa pressure sensors was measured into ${\pm}0.48%$ in the range of $-40^{\circ}C{\sim}150^{\circ}C$. Total power consumption was 30.5 mW.

The Effect of Thermal Diffusivity on the System Efficiency of a DOTEC Cycle

  • Yoon, Jung-In;Choi, Kwang-Hwan;Kwakye-Boateng, Patricia;Son, Chang-Hyo;Kim, Hyeon-Ju;Lee, Ho-Saeng
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2013
  • In this study, the effect of deep ocean condenser inlet temperature ($T_{DOI}$), condenser inlet pressure ($P_{cond,in}$), and thermal diffusivity on system efficiency of some selected refrigerants was analyzed using HYSYS. The proposed DOTEC cycle is similar to the reheat Rankine cycle but eliminates irreversibilities by bleeding a fraction of the steam between certain stages of the turbine. The evaporator inlet mass flow rate, inlet temperature of turbine 1, turbine efficiency and inlet and outlet temperature of heat source were imposed. The working fluids considered are sorted in ascending order of their molecular weights as R717, R600a and R152a. Results indicated that a fluid with a lower boiling point temperature like R717 needs a corresponding high heat source and/or evaporator inlet pressure. Also, the response of thermal diffusivity closely follows the change in TDOI as an increase in $T_{DOI}$ increases $P_{cond,in}$ which reduces thermal diffusivity and system efficiency. Furthermore, the fluid with the nominal boiling point temperature has the highest efficiency with efficiency decreasing with an increase in TDOI.

Light and bias stability of c-IGO TFTs fabricated by rf magnetron sputtering

  • Jo, Kwang-Min;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.265.2-265.2
    • /
    • 2016
  • Oxide thin film transistors (TFTs) have attracted considerable interest for gate diver and pixel switching devices of the active matrix (AM) liquid crystal display (LCD) and organic light emitting diode (OLED) display because of their high field effect mobility, transparency in visible light region, and low temperature processing below $300^{\circ}C$. Recently, oxide TFTs with polycrystalline In-Ga-O(IGO) channel layer reported by Ebata. et. al. showed a amazing field effect mobility of $39.1cm^2/Vs$. The reason having high field effect mobility of IGO TFTs is because $In_2O_3$ has a bixbyite structure in which linear chains of edge sharing InO6 octahedral are isotropic. In this work, we investigated the characteristics and the effects of oxygen partial pressure significantly changed the IGO thin-films and IGO TFTs transfer characteristics. IGO thin-film were fabricated by rf-magnetron sputtering with different oxygen partial pressure ($O_2/(Ar+O_2)$, $Po_2$)ratios. IGO thin film Varies depending on the oxygen partial pressure of 0.1%, 1%, 3%, 5%, 10% have been some significant changes in the electrical characteristics. Also the IGO TFTs VTH value conspicuously shifted in the positive direction, from -8 to 11V as the $Po_2$ increased from 1% to 10%. At $Po_2$ was 5%, IGO TFTs showed a high drain current on/off ratio of ${\sim}10^8$, a field-effect mobility of $84cm^2/Vs$, a threshold voltage of 1.5V, and a subthreshold slpe(SS) of 0.2V/decade from log(IDS) vs VGS.

  • PDF