• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.029 seconds

Properties of WPC with Chemical Modified Wood Particles (가소화 처리 목편으로부터 재조된 복합재료의 물성)

  • Kim, Chul-Hyun;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • Wood composite, could generally be made from very fine wood powder(<150 mesh) because more large size of wood particle had much less plasticity compared of polymer. To make more high plasticity of relatively large size of wood particle, wood particles were chemically modified with some reagent for acetylation and esterification, etc. WPC(wood plastic composite) was prepared with chemically modified wood particles and the mechanical properties of WPC were evaluated. WPC of esterified wood with maleic anhydride shows the highest level in tensile strength and breaking elongation.

Boron Nitride Dispersed Nanocomposites with High Thermal Shock Resistance

  • Kusunose, T.;Sekino, T.;Choa, Y.H.;Nakayama, T.;Niihara, K.
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.174-178
    • /
    • 2001
  • The microstructure and mechanical properties of $Si_3N_4/BN $nanocomposites synthesized by chemical processing were investigated. The nanocomposites containing 15 vol% hexagonal BN (h-BN) were fabricated by hot-pressing $\alpha-Si_3N_4$powders covered with turbostratic BN (t-BN). The t-BN coating on $\alpha-Si_3N_4$particles was prepared by heating $\alpha-Si_3N_4$ particles covered with a mixture of boric acid and urea in hydrogen gas. TEM observations of this nanocomposite revealed that nano-sized h-BN particles were homogeneously dispersed within $Si_3N_4$grains as well as at grain boundaries. The strength and thermal shock resistance were significantly improved in comparison with the $Si_3N_4/BN$ microcomposites.

  • PDF

Analysis on the Site Characteristics for the Restoration of Sangrim Woodlands in Hamyang-Gun, Korea (함양 상림 복원을 위한 입지특성 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • This study was conducted to establish a management plan for the Sangrim Woodlands restoration by analyzing the site characteristics of the Sangrim Woodlands Natural Monument(Natural Monument 154) in Hamyang-Gun, Gyoungsangnam-Do, Korea. Site preparation to enhance soil aeration should be applied because soil bulk density in all study sites was higher than soil compaction of natural forest soil area. Herbaceous plants could be introduced to hard soil strength for restoration of areas compacted by visitors. Also, visitors around forest areas should be restricted to enhance natural soil restoration. Soil pH in the Sangrim Woodlands was between 4.18 and 4.90. The values were lower than pH 5.34 of Korean forest soil originated from metamorphic parent materials. Lime fertilizer could be applied to reduce soil acidification in the woodlands. Short and long-term management plans such as periodical fertilizations to improve plant growth should be established to restore the Sangrim Woodlands which have high soil compaction, low soil pH and organic matter content.

An Evaluation on Concrete incorporating blame blast furnace slag powder adding Durability Improvement Agent (고로슬래그 미분말에 내구성향상 혼화제를 첨가한 콘크리트의 기초물성에 관한 실험적 연구)

  • Lee, Jong-Rok;Lim, Sang-Jun;Song, In-Myung;Yun, Jae-Hwan;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.147-150
    • /
    • 2007
  • As recent buildings often use low-quality concrete materials, are constructed defectively, and are put in extreme environmental conditions, many of them show the shortening of life resulting from the corrosion of reinforcing rods by salt damage, carbonization, freezing and thawing, cracking. This in turn raises the cost of repair and maintenance, so it is required to extend the life of structures through enhancing the durability of concrete. In response to the demand, researches on high-durability concrete are being made actively focused on the maximum water-cement ratio, the maximum unit quantity, the minimum cover thickness, the addition of mineral admixtures, etc. With this background, the present study examined the basic physical properties of concrete containing admixtures for enhancing the durability of concrete.

  • PDF

Properties of Low Density Foamed Concrete for Building Construction Using Anionic Surfactants of Synthetic and Natural Materials

  • Jeong, Ji-Yong;Kim, Jin-Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.557-566
    • /
    • 2011
  • The surfactants facilitate the formation of foam bubbles under a proper condition and provide stability of foam bubbles by decreasing the surface tension of solutions and increasing the viscosity of foam surface. However, there have been almost no practical data of foam concrete in this regard so far. This study aims to understand the effects of foaming agents such as anionic synthetic surfactant and anionic natural material surfactant on the low density foamed concrete. From the experiment, the vegetable soap of anionic natural material surfactants showed a higher foaming rate, more open pores, slightly lower compressive strength, and a higher permeability coefficient compared to the vegetable soap of anionic synthetic surfactants. It is believed that the natural material surfactants make not only the surface tension of the solution low but also the viscosity of slurry high.

Study on the Bonding Process between Thin film and Piezoelectric Materials (박막과 압전 재료 결합에 관한 연구)

  • Chong, Woo-Suk;Kim, Gi-Beum;Hong, Chul-Un
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1014-1018
    • /
    • 2005
  • The purpose of this study is to obtain strong bond strength at the interface between piezoelectric substrates and semiconductor thin films to be applied for the manufacture of high-performance acoustic wave semiconductor coupled device. For this purpose, we have compared and examined the effects of different surface treatment methods on hydrophile properties at the surface of the piezoelectric substrates. Moreover, we have observed the effect of microwave and laser on the elimination of water molecules at the interface. As for the piezoelectric substrates, dry method for surface treatment was found to be superior in the control of hydrophilicity of the surface compared to wet method. On the other hand, both microwave and laser were found to be effective in the elimination of water molecules in the interface.

Study for the Film Coating Techniqur of Gilt Bronze Artifacts from Mir ksa Temple (미륵사지 출토 고대 금동유물의도금기법에 관한 연구)

  • Lim, Sun-Ki;Kang, Dai-Ill;Kim, Sun-Dug;Park, Dong-Kyu;Kang, Sung-Goon
    • 보존과학연구
    • /
    • s.14
    • /
    • pp.45-76
    • /
    • 1993
  • Au-Cu alloyed coating layer were found by Hg-amalgam process and it seemed to be used Cu-amalgam process similar to Au-amalgam. Coated layer is dense and unique, Thickness of layer was 1.5 to $18.0\mum$ which had 95.3 to 99.8% purity of gold Matrix metal mostly cosists of forged copper alloy which had high purity and ferrite ($\alpha$) strusture. It showed excellent refining technical level at that time. Aowever, the nail, ferrous matrix used for strength needed, composed of silver foil packed and gold layer for adherence between ferrous matrix and gold layer

  • PDF

Structural Vibration Control using Instantaneous Optimal Control (순간 최적제어에 의한 구조물의 진동제어)

  • 최창근;권대건
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.365-372
    • /
    • 1998
  • Recently, constructions of large and slender structures have been increased owing to the advancement of the structural technologies and that of the new light-weight and high-strength construction materials. Consequently, vibration problems of those slender structures have become a new issue in the area of structural engineering. Active control for those structures is the method that keeps the structures safe from the external loads, especially dynamic loads, by enforcing active forces derived from control devices. In this paper, a procedure for the instantaneous optimal control for structural vibration is presented. Numerical method and experiment are performed for evaluating the effectiveness of active control for reducing vibration of structures.

  • PDF

Precursor Events in Environmentally Assisted Cracking Behaviour of Light Metals

  • Raja, V.S.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.153-158
    • /
    • 2016
  • Light metal alloys of Mg, Ti, and Al undergo environmentally assisted cracking (EAC). Passive film breakdown and pitting are not only precursor events for stress corrosion, but can accelerate hydrogen evolution that is responsible for hydrogen embrittlement. This is clearly demonstrated in the case of Mg and Ti alloys. The so-called innocuous precipitates, which do not directly participate in either alloy strengthening or EAC can be effective precursors for initiating EAC. This aspect is highlighted using high strength aluminium alloys. Such behaviours lead to a paradigm shift in the design of alloys with resistance to EAC.

Optimal Design of Laminated Composite Beams with Open Cross Section (복합 적층 개단면 보의 최적설계)

  • 배하록;홍순호;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.309-316
    • /
    • 1999
  • Laminated composite plates are very useful in various fields of engineering where high strength-to-weight and stiffness-to-weight ratios are required. Design optimization of composite structures has gained importance in recent years as the engineering applications of fiber reinforced materials have increased and weight savings has become an essential design objective. However, due to the anisotropic material properties of laminated composite structure it is very difficult to analyze and design. In this study, numerical optimization technique together with the finite element method is used to find the optimum design of FRP. Various combination of fiber orientation for the laminate layers are investigated and several local optimum solutions are found.

  • PDF