• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.033 seconds

Evaluating Nanomechanical Properties on Interface of Friction-welded TiAl and SCM440 Alloys with Cu as an Insert Metal (삽입금속 Cu를 적용한 TiAl 합금과 SCM440의 마찰용접 계면의 나노역학물성 평가)

  • Kim, Ki-Young;Oh, Myung-Hoon;Choi, In-Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.309-314
    • /
    • 2021
  • Due to the superior corrosion resistance and mechanical properties of TiAl alloy at high temperature, it has been utilized as a turbine wheel of a turbocharger. The dissimilar metallic bonding is usually applied to combine the TiAl turbine wheel with the SCM440 structural steel which is used as a driving shaft. In this study, the TiAl and SCM440 joint were fabricated by using a friction welding technique. During bonding process, to suppress the martensitic transformation and the formation of cracks, which might reduce a strength of the joints, Cu was used as an insert metal to relieve stress. As a result, the intermetallic compounds (IMCs) layer was observed at TiAl/Cu interface while no IMC formation was formed at SCM440/Cu interface. Since understanding of the IMCs effects on the mechanical performance of welded joint is also essential for ensuring the reliability and integrity of the turbocharger system, we estimated the nanohardness of welded joint region through nanoindentation. The relation between the microstructural feature and its mechanical property is discussed in detail.

Dissolution and Melting Phenomenon of Al2Cu according to Solution Treatment Temperature of Al12Si3Cu alloy (Al-Si-Cu합금의 용체화 처리 온도에 따른 Al2Cu 용해와 용융 현상)

  • Lee, Seunggwan;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • In this study, dissolution and melting phenomenon of the Al2Cu was studied for the high-strength Al-Si-Cu aluminum alloy in automobile component. The Solution heat treatment was performed at 480℃ and 510℃ for 4hours. Microstructure analysis of the specimen was performed using the optical micrograph and scanning electron microscope for qualitative and quantitative analysis of various phases, the chemical composition of secondary phases was achieved by energy dispersive spectroscopy (EDS) and electron probe micro analysis (EPMA). As a result of the electron probe micro analysis, a plate like Al2Cu phase was observed, and eutectic Si phase was observed of a coarsen plate shape. At a temperature of 510, necking phenomenon occurs in a specific part of plate like Al2Cu, and it is segmented and dissolved in the Al matrix. When the temperature of the alloy exceeds the melting point of Al2Cu, incipient melting occurs at the grain boundary of undissolved Cu particles

Synthesis and Characterization of Triptycene-Based Triphenylamine Electron Donor Molecules (트립티센 기반의 트리페닐아민 전자-주게 분자 합성 및 특성 분석)

  • Ryu, Youngjun;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.359-365
    • /
    • 2022
  • The development of efficient electron donor (or hole-transporting) molecules that can be used in various optoelectronic device fields is highly demanded. In this work, a novel class of triptycene-based three-dimensional (3D) triphenylamine (TI-TPA) derivatives with different end substituents was designed and prepared for transparent electron donor materials. Owing to the rigid 3D triptycene framework, the obtained TI-TPA derivatives had an amorphous morphology with high thermal decomposition temperature. The oxidation potential of these TI-TPA derivatives decreased as the electron donating strength of the end substituent increased. Among TI-TPA derivatives, TI-TPA-OMe exhibited the highest HOMO level (-5.31 eV) which is similar to that of Spiro-OMeTAD (-5.22 eV). In addition, TI-TPA-OMe was found to form a strong charge transfer complex with the triptycene-based acceptor TI-BQ, leading to a new absorption band at around 640 nm. These results can be applied for developing efficient electron donor materials that can mimic the advantages of the spiro-linked structure and TPA units of Spiro-OMeTAD.

A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method (양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구)

  • Kim, Jisoo;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.290-299
    • /
    • 2022
  • Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.

Characterization of Product Surface according to Tool Surface Conditions when Forming TRIP1180 Steel Sheets with PVD CrN-coated Tools (PVD CrN 코팅 금형의 TRIP1180 판재 성형 시 금형의 표면상태에 따른 제품 표면특성 평가)

  • J. H. Bang;G. H. Bae;M. Kim;M. G. Lee;H. G. Kim;J. H. Song
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.247-254
    • /
    • 2023
  • This study conducted the wear tests on bending punches coated with PVD CrN and examined the surface quality of the product formed by each punch in the forming of uncoated TRIP1180 sheets. The study quantitatively estimated the surface quality of the product by measuring the roughness and imaging the product surface. The correlation between the punch wear depth and the product surface roughness was quantitatively analyzed. The results showed that before failure occurs, the product roughness was comparable with that of the as-received, and the product surface was smooth without scratches and defects. However, after failure, the punch wear is caused by fretting wear mechanism, and a punch whose coating is not completely peeled plows the product surface, resulting in severe scratches with grooves and ridges on the product surface. Severe wear on the punch surface caused by fretting wear can rapidly degrade the product surface quality as it is directly affected by the punch surface condition, and the product surface quality accurately reflects the punch wear condition.

Reliability Analysis for Composite Plate with the Various Design Requirement (다양한 설계 요구조건을 고려한 복합재 평판의 신뢰성 해석)

  • Lee, Seok-Je;Jang, Moon-Ho;Kim, In-Gul
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.25-30
    • /
    • 2007
  • The advanced fiber-reinforced laminated composites are widely used in a variety of engineering applications such as aerospace, marine, mechanical and civil engineering for weight savings because of their high specific strength and stiffness. The material properties of ply is known to have larger variations than that of conventional materials and very sensitive to the loading direction. Therefore, it is important to consider the variations on designing the laminated composite. This paper demonstrates the importance of considering uncertainties through examining the effect of material properties variations on various design requirements such as tip deflection, natural frequency and buckling stress using COMSOL-MATLAB interface.

Effect of Cooling Rate and Temperature on Intercritical Annealing of Medium-Carbon Cr-Mo Alloy for High Strength Cold Heading Quality Wire Rod (고강도 냉간압조용 중탄소 Cr-Mo 합금강의 임계간 어닐링시 냉각속도 및 온도의 영향)

  • JongHyeok Lee;ByoungLok Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.230-236
    • /
    • 2023
  • The current study deals with the effect of cooling rate and temperature for annealing on medium-carbon Cr-Mo alloy steel, especially for cold heading quality wire rod, to derive the optimum micro-structures for plastic deformation. This is to optimize the spheroidization heat treatment conditions for softening the material. Heat treatment was performed under seven different conditions at a temperature between Ac1 and Ac3, mostly within 720℃ to 760℃, and the main variables at this time were temperature, retention time and cooling rate. Microstructure and phase changes were observed for each test condition, and it was confirmed that they were greatly affected by the cooling rate. It was also confirmed that the cooling rate was changed in the range of 0.1℃/min to 5℃/min and affected by phase deformation and spheroidization fraction. The larger the spheroidization fraction, the lower the hardness, which is associated with the increasing connection of ferrite phases.

Grain Size Dependence of Tensile Deformation at Room Temperature of a Reversely Transformed Fe-Cr-Mn Transformation Induced Plasticity aided Stainless Steel (역변태 Fe-Cr-Mn계 변태유기소성 스테인레스강의 결정립 크기에 따른 상온인장변형 거동)

  • J. Y. Choi;K-T. Park
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • A wide range of grain size was achieved in a Fe-Cr-Mn austenitic stainless steel (STS) by cold rolling and reversion annealing. The tensile characteristics of the STS were analyzed in terms of the dependence of strain induced martensitic (SIM) transformation on the grain size. In the ultrafine grain regime, the steel showed a high yield strength over 1 GPa, a discontinuous yielding, and a prolonged yield point elongation followed by considerable strain hardening. By increasing the grain size, the discontinuous yielding diminished and the yield point elongation decreased. The microstructural examination revealed that these tensile characteristics are closely related to the suppression of SIM transformation with decreasing the grain size. Especially, the prolonged yield point elongation of the ultrafine grained STS was found to be associated with development of unidirectional ε martensite bands. Based on the microstructural examination of the deformed microstructures, the rationalization of the grain size dependence of SIM transformation was suggested.

Prediction Study of Heat-Affected Zone (HAZ) Properties in ERW Pipes using Hardness Distribution and Reverse Engineering Techniques (경도분포 및 역설계 기법을 활용한 ERW 파이프 열영향부(HAZ) 물성 예측 연구)

  • S. Lee;D. Hyun;S. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.321-328
    • /
    • 2023
  • To ensure driver safety, high-strength steel pipes are utilized in the chassis and internal structures design of automobiles. ERW(electric resistance welding) pipes, fabricated through welding at joints using electrical resistance, form a Heat-Affected Zone (HAZ) during the welding process. Due to characteristics such as increased hardness and reduced ductility compared to the base material, HAZ poses challenges in finite element analysis (FEA) for pipe shapes. In this study, for FEA considering HAZ properties, mechanical properties were measured through uniaxial tensile testing and digital image correlation (DIC) techniques after specimen fabrication. These measurements were validated using reverse engineering methods. Furthermore, hardness measurements and gaussian functions were employed to ascertain the hardness distribution within the HAZ, serving as a basis for subdividing the HAZ and modeling the pipe shape. To validate the effectiveness of the HAZ modeling approach, models were interpreted incorporating only base material properties and models incorporating average-calculated HAZ properties. Comparative analysis was performed, revealing that the model subdividing the HAZ based on hardness measurements closely approximated experimental values. This validation offered a methodology for HAZ modeling in FEA.

Fabrication of petroleum pitch/polymer composite binder for anode material in lithium-ion battery (리튬이온 배터리용 음극 합금/폴리머 복합체 바인더 패브릭)

  • Hyeon Taek Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1191-1200
    • /
    • 2023
  • The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.