• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.032 seconds

The Experimental Study on High Strength Concrete of High Volume Fly-Ash (플라이애쉬를 대량 사용한 고강도 콘크리트에 관한 실험적 연구)

  • 이동하;서동훈;전판근;백민수;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.275-280
    • /
    • 2002
  • To study of high volume fly -ash concrete replace cement and fine aggregate together. Proportion consideration economy cost and performance improve replacement high volume fly-ash. Experimentation study of high-strength which cement about fly-ash replacement maximum 50%Flash concrete tested slump, air contest, setting and Hardening concrete tested day of age 1, 3, 7, 28, 91 compression strength in underwater curing. Purpose of study is consultation materials in field that variety of fly ash replacement concrete mix proportion comparison and valuation.

  • PDF

Effect of Cold Working on Tensile and Charpy Impact Properties of a High-Nitrogen Fe-18Mn-18Cr-0.61N Austenitic Steel (오스테나이트계 Fe-18Mn-18Cr-0.61N 고질소강의 인장 및 충격 특성에 미치는 냉간 가공의 영향)

  • Lee, S.Y.;Lee, S.I.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.3
    • /
    • pp.121-126
    • /
    • 2014
  • High-nitrogen Fe-18Mn-18Cr-N austenitic steels with higher yield strength have been recently developed and used for generator retaining rings because they have non-magnetic, high strength, high ductility, and good corrosion resistance. In the present study, a high-nitrogen Fe-18Mn-18Cr-0.61N austenitic steel was fabricated and then tensile and Charpy impact tests were conducted on them in order to investigate the effect of cold working on the mechanical properties. Although the yield and tensile strengths usually increased with cold working, the ductility and impact toughness significantly decreased after cold working. On the other hand, the high-nitrogen austenitic steel exhibited a ductile-brittle transition due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductile-brittle transition temperature obtained from Charpy impact tests could be remarkably increased by $60^{\circ}C$ after 20% cold working because of the enhanced cleavage-like brittle fracture.

A predicting model for thermal conductivity of high permeability-high strength concrete materials

  • Tan, Yi-Zhong;Liu, Yuan-Xue;Wang, Pei-Yong;Zhang, Yu
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • The high permeability-high strength concrete belongs to the typical of porous materials. It is mainly used in underground engineering for cold area, it can act the role of heat preservation, also to be the bailing and buffer layer. In order to establish a suitable model to predict the thermal conductivity and directly applied for engineering, according to the structure characteristics, the thermal conductivity predicting model was built by resistance network model of parallel three-phase medium. For the selected geometric and physical cell model, the thermal conductivity forecast model can be set up with aggregate particle size and mixture ratio directly. Comparing with the experimental data and classic model, the prediction model could reflect the mixture ratio intuitively. When the experimental and calculating data are contrasted, the value of experiment is slightly higher than predicting, and the average relative error is about 6.6%. If the material can be used in underground engineering instead by the commonly insulation material, it can achieve the basic requirements to be the heat insulation material as well.

Effect of waste cement bag fibers on the mechanical strength of concrete

  • Marthong, Comingstarful
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.103-115
    • /
    • 2019
  • Polypropylene (PP) fibers for making fabric which is used for packing cement have a high strength and high tear resistance. Due to these excellent properties the present study investigates the effect of PP fibers on the mechanical strength of concrete. Mechanical strength parameters such as compressive strength, splitting tensile strength and flexural strength are evaluated. Structural integrity of concrete using Ultrasonic Pulse Velocity (UPV) was also studied. Concrete containing PP fibers in percentage of 0%, 0.15%, 0.25%, 0.5% and 0.75% was developed with a characteristic compressive strength of 25 MPa. Concrete cubes, cylinder and prismatic specimens were cast and tested. It was found that the UPV values recorded for all specimens were of the similar order. Test results indicated the used of PP fibers can significantly improve the flexural and splitting tensile strengths of concrete materials whereas it resulted a decreased in compressive strength. The relative increase in split tensile and flexural strength was optimum at a fiber dosage of 0.5% and a mild decreased were observed in 28 days compressive strength. The findings in this paper suggested that PP fibers deriving from these waste cement bags are a feasible fiber option for fiber-reinforced concrete productions.

An Experimental Study on the Characteristics of Deformation of Repaired Epoxy Resin by Flexural Strength Test (휨시험에 의한 에폭시 균열주입제의 변형특성에 관한 실험적 연구)

  • Kim Jae Sung;Bae Jun Young;Kim Kyung Deok;Kang Suk Pyo;Kawk Ju Ho;Kim Jung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.269-272
    • /
    • 2005
  • Epoxy resins are gradually becoming some of the most important and versatile polymers in modem civil engineering. Because epoxy resins have some unigue properties, such as toughness, versatility of viscosity and curing conditions, good handling characteristics, high adhesive strength, inertness, low shrinkage compared to most other thermo-setting resins and concrete, and resistance to chemicals, they have found many applications in construction castings, repair materials, road or bridge deck pavements, coatings, and as structural or non structural adhesives. In this applications, epoxy resins are widely used for polymer concretes, grouting materials, injection glues, and sealants. In this paper, characteristics of deformation of repair material after repaired have been investigated by viscosity of repair material and the width of crack. It is believed that flexural strength of epoxy resin with low viscosity is high because tensile strength is high and elongation at break is low, fracture energy is low.

  • PDF

Seismic Response of Exterior Beam-Column-Slab connection using High-Strength Materials (고강도 재료를 사용한 외부 보-기둥-슬래브 접합부의 지진응답)

  • 장극관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.343-350
    • /
    • 1999
  • The purpose of this study is to compare the response of the high-strength concrete beam-column-slab subassembly with the response of a normal-strength concrete specimens. Four assemblies were designed 2/3 scale beam-column-slab joint(fc'=240kg/cm2 fc'=700kg/cm2) and tested to investigate seismic behaviour. From the test results 1) flexral cracks emerge to inside of bean deeply for high strength concrete member 2) the high-strength specimens represented stable hysteretic behaviour for the displacement ductility 5.5 but degradation in stiffness and strength and unstable hysteretic behaviors were observed owing to the brittleness of high-strength concrete beyond its range.

  • PDF

Effects of Mineral Admixture on the Paste Fluidity and Mortar Strength Development of High Chloride Cement (염소 고함유시멘트의 페이스트 유동성과 모르타르 강도발현성에 미치는 무기질 혼화재의 영향)

  • Jeong, Chan-Il;Park, Soo-Kyung;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.43-51
    • /
    • 2007
  • Fluidity, setting time, hydration heat, bond water ratio, compressive strength, SEM and BET of OPC were measured by adding 1.0 wt% KCl and replacing 20 wt% mineral admixture in order to examine effects of blast furnace slag (BFS), limestone powder (LSP), and fly ash (FA) on fluidity and strength development of the cement contained much chloride. In general, the cement contained much chloride was high in heat of hydration, short in its setting time, low in its fluidity and low in its strength at 28 days due to the rapid hydration in its initial stage. As a result of the experiment, it has been demonstrated that fluidity became improved but the compressive strength at 28 days was decreased as replaced LSP to the cement contained much chloride. the fluidity and compressive strength at 28 days was improved as replaced BFS, the initial compressive strength development was improved due to the activation of initial reaction by KCl. Fluidity, initial compressive strength and late compressive strength at 28 days of cement contained much chloride replaced 5 wt% LSP and 15 wt% BFS concurrently was better than OPC, but the hydration heat was lower.

Aluminium Based Brazing Fillers for High Temperature Electronic Packaging Applications

  • Sharma, Ashutosh;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.1-5
    • /
    • 2015
  • In high temperature aircraft electronics, aluminium based brazing filler is the prime choice today. Aluminium and its alloys have compatible properties like weight minimization, thermal conductivity, heat dissipation, high temperature precipitation hardening etc. suitable for the aerospace industry. However, the selection of brazing filler for high temperature electronics requires high temperature joint strength properties which is crucial for the aerospace. Thus the selection of proper brazing alloy material, the composition and brazing method play an important role in deciding the final reliability of aircraft electronic components. The composition of these aluminium alloys dependent on the addition of the various elements in the aluminium matrix. The complex shapes of aluminium structures like enclosures, heat dissipaters, chassis for electronic circuitry, in avionics are designed from numerous individual components and joined thereafter. In various aircraft applications, the poor strength caused by the casting and shrinkage defects is undesirable. In this report the effect of various additional elements on Al based alloys and brazing fillers have been discussed.

Effect of Austempering Time on the Microstructure and Mechanical Properties of Ultra-High Strength Nanostructured Bainitic Steels (오스템퍼링 시간에 따른 초고강도 나노 베이나이트강의 미세조직과 기계적 특성)

  • Lee, Ji-Min;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.87-92
    • /
    • 2020
  • This study deals with the effects of austempering time on the microstructure and mechanical properties of ultra-high strength nanostructured bainitic steels with high carbon and silicon contents. The steels are composed of bainite, martensite and retained austenite by austempering and quenching. As the duration of austempering increases, the thickness of bainitic ferrite increases, but the thickness of retained austenite decreases. Some retained austenites with lower stability are more easily transformed to martensite during tensile testing, which has a detrimental effect on the elongation due to the brittleness of transformed martensite. With increasing austempering time, the hardness decreased and then remained stable because the transformation to nanostructured bainite compensates for the decrease in the volume fraction of martensite. Charpy impact test results indicated that increasing austempering time improved the impact toughness because the formation of brittle martensite was prevented by the decreased fraction and increased stability of retained austenite.

INFLUENCE OF MECHANICAL ALLOYING ATMOSPHERES ON THE MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 15Cr ODS STEELS

  • Noh, Sanghoon;Choi, Byoung-Kwon;Kang, Suk Hoon;Kim, Tae Kyu
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.857-862
    • /
    • 2014
  • Mechanical alloying under various gas atmospheres such as Ar, an Ar-$H_2$ mixture, and He gases were carried out, and its effects on the powder properties, microstructure and mechanical properties of ODS ferritic steels were investigated. Hot isostatic pressing and hot rolling processes were employed to consolidate the ODS steel plates. While the mechanical alloyed powder in He had a high oxygen concentration, a milling in Ar showed fine particle diameters with comparably low oxygen concentration. The microstructural observation revealed that low oxygen concentration contributed to the formation of fine grains and homogeneous oxide particle distribution by the Y-Ti-O complex oxides. A milling in Ar was sufficient to lower the oxygen concentration, and this led a high tensile strength and fracture elongation at a high temperature. It is concluded that the mechanical alloying atmosphere affects oxygen concentration as well as powder particle properties. This leads to a homogeneous grain and oxide particle distribution with excellent creep strength at high temperature.