DOI QR코드

DOI QR Code

Aluminium Based Brazing Fillers for High Temperature Electronic Packaging Applications

  • Sharma, Ashutosh (Dept. of Materials Science and Engineering, University of Seoul) ;
  • Jung, Jae-Pil (Dept. of Materials Science and Engineering, University of Seoul)
  • Received : 2015.08.13
  • Accepted : 2015.12.10
  • Published : 2015.12.30

Abstract

In high temperature aircraft electronics, aluminium based brazing filler is the prime choice today. Aluminium and its alloys have compatible properties like weight minimization, thermal conductivity, heat dissipation, high temperature precipitation hardening etc. suitable for the aerospace industry. However, the selection of brazing filler for high temperature electronics requires high temperature joint strength properties which is crucial for the aerospace. Thus the selection of proper brazing alloy material, the composition and brazing method play an important role in deciding the final reliability of aircraft electronic components. The composition of these aluminium alloys dependent on the addition of the various elements in the aluminium matrix. The complex shapes of aluminium structures like enclosures, heat dissipaters, chassis for electronic circuitry, in avionics are designed from numerous individual components and joined thereafter. In various aircraft applications, the poor strength caused by the casting and shrinkage defects is undesirable. In this report the effect of various additional elements on Al based alloys and brazing fillers have been discussed.

Keywords

References

  1. I. J. Polmear, Light alloys: From Traditional Alloys to Nanocrystals, 4th Ed., pp. 16-26, Elsevier, Butterworth Heinemann (2006).
  2. B. Altshuller, Aluminum Brazing Handbook, 4th Ed., pp. 24-32, The Aluminum Association, Inc., Washington D.C. (1990).
  3. A. H. Musfirah and A. G. Jaharah, "Magnesium and Aluminum Alloys in Automotive Industry", J. Appl. Sci. Res., 8, 4865 (2012).
  4. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann and P. J. Uggowitzer, "Effect of Main Alloying Elements on Strength of Al-Si Foundry Alloys at Elevated Temperatures", Int. J. Cast Metal. Res., 25, 215 (2012). https://doi.org/10.1179/1743133612Y.0000000004
  5. C. J. Hang, C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou and H. H. Wang, "Growth Behavior of Cu/Al Intermetallic Compounds and Cracks in Copper Ball Bonds During Isothermal Aging", Microelectron. Reliab., 48, 416 (2008). https://doi.org/10.1016/j.microrel.2007.06.008
  6. W. F. Smith, Principles of Materials Science and Engineering, 3rd Ed., pp. 1-892, McGraw-Hill, Inc. (1996).
  7. M. H. Larsen, J. C. Walmsley, O. Lunder, R. H. Mathiesen and K. Nisancioglu, "Intergranular Corrosion of Copper-Containing AA6xxx AlMgSi Aluminium Alloys", J. Electrochem. Soc., 155(11), C550 (2008). https://doi.org/10.1149/1.2976774
  8. K. Thulukkanam, Heat Exchanger Design Handbook, 2nd Ed., pp. 996-1002, CRC Press, Florida USA (2013).
  9. L. C. Tsao, W. P. Weng, M. D. Cheng, C. W. Tsao and T. H. Chuang, "Brazeability of a 3003 Aluminum alloy with Al-SiCu-based filler metals", J. Mater. Eng. Perform., 11, 360 (2002). https://doi.org/10.1361/105994902770343863
  10. J. R. Davis, "Aluminum and Aluminum Alloys", in ASM Specialty Handbook, J. R. Davis & Associates, Eds., pp. 3-12, ASM International, USA (1993).
  11. I. J. Polmear, Metallurgy of the Light Metals, 2nd Ed., pp. 1-288, E Arnold, UK (1982).
  12. I. J. Polmear, "A Century of Age Hardening", Mater. Forum, 28, 1 (2004).
  13. E. Romhanji and M. Popovic, "Problems and Prospect of Al-Mg Alloy Applications in Marine Constructions, Association of Metallurgical Engineers of Serbia", Metallurgija-Journal of Metallurgy, 12, 297 (2006).
  14. F. Stadler, H. Antrekowitschn, W. Fragner, H. Kaufmann, E. R. Pinatel and P. J. Uggowitzer, "The Effect of Main Alloying Elements on the Physical Properties of Al-Si Foundry Alloys", Mat. Sci. Eng. A, 560, 481 (2013). https://doi.org/10.1016/j.msea.2012.09.093
  15. E. M. Elgallad, A. M. Samuel, F. H. Samuel and H. W. Doty, "Effects of Additives on the Microstructures and Tensile Properties of a New Al-Cu Based Alloy Intended For Automotive Castings", AFS Transactions, American Foundary Society, Paper 10-042, pp. 1-24, IL, USA (2010).
  16. M. Jaradeh and T. Carlberg, "Effect of Titanium Additions on the Microstructure of DC-Cast Aluminium Alloys", Mat. Sci. Eng. A, 413-414, 277 (2005). https://doi.org/10.1016/j.msea.2005.09.006
  17. Y. Birol, "A Novel Al-Ti-B Alloy For Grain Refining Al-Si Foundry Alloys", J. Alloy. Compd., 486, 219 (2009). https://doi.org/10.1016/j.jallcom.2009.07.064
  18. T. N. Ware, A. K. Dahle, S. Charles and M. J. Couper, "Effect of Sr, Na, Ca & P on the Castability of Foundry Alloy A356.2", ASM Materials Solutions Conference & Exposition, Proc. 2nd International Aluminium Casting Technology Symposium (IACTS), Columbus, Ohio, USA (2002).
  19. S. W. Nam and D. H. Lee, "The Effect of Mn on the Mechanical Behavior of Al Alloys", Metals and Materials, 6(1), 13(2000). https://doi.org/10.1007/BF03026339
  20. A. Darvishi, A. Maleki, M. M. Atabaki and M. Zargami, "The Mutual Effect of Iron and Manganese on Microstructure and Mechanical properties of Aluminium-Silicon Alloy", Association of Metallurgical Engineers of Serbia, MJoM, 16(1), 11(2010).
  21. T. O. Mbuyaa, B. O. Odera and S. P. Nganga, "Influence of Iron on Castability and Properties of Aluminium Silicon Alloys: Literature Review", Int. J. Cast Metal Res., 15, 451(2003). https://doi.org/10.1080/13640461.2003.11819527
  22. N. L. Sukiman, X. Zhou, N. Birbilis, A. E. Hughes, J. M. C. Mol, S. J. Garcia, X. Zhou and G. E. Thompson, "Durability and Corrosion of Aluminium and Its Alloys: Overview", Property Space, Techniques and Developments", in Aluminium Alloys, Z. Ahmed., Ed., pp. 47-97, InTech, ISBN 980-953-307-512-4 (2012).
  23. Z. Nie, T. Jin, J. Fu, G. Xu, J. Yang, J. Zhou and T. Zuo, "Research on Rare Earth in Aluminum", Mater. Sci. Forum, 396-402, 1731 (2002). https://doi.org/10.4028/www.scientific.net/MSF.396-402.1731
  24. K. Nogita, S. D. McDonald and A. K. Dahle, "Eutectic Modification of Al-Si Alloys with Rare Earth Metals", Mater. Trans., 45(2), 323 (2004). https://doi.org/10.2320/matertrans.45.323
  25. H. F. El-Labban, M. Abdelaziz and E. R. I. Mahmoud, "Preparation and Characterization of Squeeze Cast-Al-Si Piston Alloy Reinforced by Ni and Nano-$Al_2O_3$ Particles", J. King Saud Univ. Eng. Sci., in press, DOI: 10.1016/j.jksues.2014.04.002 (2014)
  26. Hongseok Choi and Xiaochun Li, "Refinement of Primary Si and Modification of Eutectic Si for Enhanced Ductility of Hypereutectic Al-20Si-4.5Cu Alloy with Addition of $Al_2O_3$ Nanoparticles", J. Mater. Sci., 47, 3096 (2012). https://doi.org/10.1007/s10853-011-6143-y
  27. A. Sharma, S. Bhattacharya, S. Das, H.-J. Fecht and K. Das, "Development of Lead Free Pulse Electrodeposited Tin Based Composite Solder Coating Reinforced with ex-situ Cerium Oxide Nanoparticles", J. Alloy. Compd., 574, 609 (2013). https://doi.org/10.1016/j.jallcom.2013.06.023
  28. A. Sharma, S. Bhattacharya, S. Das and K. Das, "Fabrication of Sn-Ag/$CeO_2$ Electro-Composite Solder by Pulse Electrodeposition", Metall. Mater. Trans. A, 44A, 5587 (2013).

Cited by

  1. Epoxy Polymer Solder Pastes for Micro-Electronic Packaging Applications vol.37, pp.2, 2015, https://doi.org/10.5781/jwj.2019.37.2.2