• Title/Summary/Keyword: high strength concrete beam

Search Result 470, Processing Time 0.024 seconds

Experimental Study on the Mechanical Behavior of Reinforced Concrete Beams Exposed to High Temperature (고온에 노출된 철근콘크리트 보의 역학적 특성에 관한 실험연구)

  • Choi, Kwang-Ho;Lee, Joong-Won;Eum, Young-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.127-130
    • /
    • 2005
  • The purpose of this study is to investigate the flexural behavior of reinforced concrete beam members exposed to high temperature. In order to study the flexural behaviors, the 17 specimens have been tested with variables of reinforcement ratios($0.5\rho_{max},\rho_{min}$), heating conditions(nonheating, 400$^{circ}C$, 600$^{circ}C$, 800$^{circ}C$ heating and 1 hour preservation) and loading state(stressed and residual state). The results show that the stiffness and strength of specimens are lower when they are exposed to higher temperature and the pattern of crack and color of specimens exposed to fire are different from ordinary concrete members.

  • PDF

An Experimental Study on Structural Behavior of High-strength Concrete Members with Compressive Strength of 80 MPa Subjected to Flexure (휨을 받는 압축강도 80 MPa 수준의 고강도 콘크리트 부재의 구조거동 실험 연구)

  • Yang, In-Hwan;Hwang, Chul-Sung;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2017
  • This paper concerns the structural behavior of high-strength concrete beams with compressive strength of 80 MPa subjected to flexure. Main test variables were nominal yielding strength of longitudinal rebar including normal strength rebar(SD 400) and high strength rebar(SD 600), reinforcement ratio from 0.98 to 1.58% and beam section size with $200{\times}250$, $200{\times}300mm$. The nine beams were cast and tested under flexure. The study investigated ultimate flexural strength, load-deflection relationship, crack patterns, failure patterns and ductility of the test beams. Test results indicate that when rebar ratio increased flexural strength increased and ductility decreased. In addition, the number of cracks increased and the crack width decreased as the reinforcement ratio increased. The yield strength of rebar did not affect significantly load-crack width relationship. Nonlinear analysis of test beams was performed and then test results and analytical results of ultimate load were compared. Analytical results of high-strength concrete beams overall underestimated flexural strength of test beams.

The Investigation of the Effects on Bent-up Bars within Beam-Column Joint Core with High-Strength Concrete (고강도 콘크리트 보-기둥접합부의 역학적 거동에 대한 연구 -구부림 철근을 중심으로-)

  • 이광수;오정근;신성우;최문식
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.123-132
    • /
    • 1991
  • The purpose of this study was to Investigate the effects of bent - up bar Within beam - column 1lint core with High - Strength Concrete up to 800kg/$cm^2$. To achieve these objectives, 5 specimens were designed and tested under monotoric loading and reversed cyclic loadings. The primary variables were the number of bent-up bars, compressive strength of concrete and loading patterns. The results showed that the load capacity of specimen subjected to monotonic loading had more large than that of specirnn subjected to reversed cyclic loadings and the bent - up bar within joint core could prevented the crack at the joint face from propagating into the pint core but the failure was concentrated at the face of beam - column pint. Thus the study on flexural strength ratio should be accomplished before using bent - up bars within the joint core.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

Study of Inelastic Responses of a 1:12 Scale 10-Story R.C. Frame-Wall Structure (1:12축소 10층 R.C. 골조-벽식 구조의 비선형 거동 연구)

  • 이한선;김상호;유은진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.867-872
    • /
    • 2000
  • A 1:12 scale 10-story RC building structure was constructed and the experiment was performed. The test results are presented and compared with the results of the analysis conducted with DRAIN-2DX. It is concluded that some local deformations cannot be described reasonably with the wall model using only Plastic Hinge Beam-Column Element(TYPE02) in DRAIN-2DX whereas the strength and stiffness of the whole structure can be predicted with high reliability.

Evaluation of Horizontal Shear Strength for Concrete Composite Members (콘크리트 합성부재의 수평 전단강도 평가)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.407-417
    • /
    • 2016
  • In this study, concrete composite beams were tested under two-point loading to evaluate horizontal shear strength. The test variables were a type of composite members (PC+RC, PSC+RC, SFRC+RC), area ratio of high-strength (60MPa) to low-strength concrete (24 MPa), and transverse reinforcement ratio. The test results showed that the contribution of transverse reinforcements and interface conditions had influence on horizontal shear strength. Existing and previous test results were classified according to test methods and the interface conditions and were compared with the predictions of current design codes. On the basis of test results, an improved design method was proposed.

Prediction of Flexural Capacity of Steel Fiber-Reinforced Ultra High Strength Concrete Beams (강섬유 보강 초고강도 콘크리트 보의 휨강도 예측기법의 제안)

  • Yang, In Hwan;Joh, Changbin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.317-328
    • /
    • 2010
  • The method to evaluate the flexural capacity of steel fiber-reinforced ultra high strength concrete beams was proposed in this study. An experimental program was set up and fourteen beams have been tested. Test results were compared with predictions by design code and by the proposed method, respectively. It was found that predictions by using ACI 544 Committee recommendations considerably underestimate the flexural capacity. Underestimation of flexural capacity resulted from that of tensile stress block. Three-point bending test data of notched prism specimens and their inverse analysis results were incorporated into modeling of tension stress block. The ratio of the predicted to the experimental flexural capacity was in the range of 0.98 to 1.14. The present study represents that the proposed method allows more realistic prediction of flexural capacity of steel fiber-reinforced ultra high strength concrete beams.

The Compatibility Evaluation of Concrete Repairs under Bending Load (휨하중을 받는 콘크리트 보수재의 적합성기준 평가)

  • 이웅종;정연식;양승규;유재상;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.799-804
    • /
    • 2002
  • The compatibility of concrete repairs is proposed by D. Cusson et al. and N. K. Emberson et al. But this is the general compatibility of concrete repairs. This study is actualized the general compatibility of concrete repairs on the flexural specimen under bending load. This study is obtained following results. 1) As a results of analysis for repair effects on failure shape, debonding between concrete and repairs, yielding load and ultimate/yielding ratio, the repair effects is ascertained that the repair R3 is much excellent than the repair R7, but on the other hand R7 is very high than R3 on the viewpoint of compressive strength, where repair R7, R3 is a product. 2) Therefore the compatibility of concrete repair proposed by D. Cusson et al. and N. K. Emberson et al. must be reanalyzed for structures types of column, beam, wall, slab et al.

  • PDF

Modeling shear capacity of RC slender beams without stirrups using genetic algorithms

  • Nehdi, M.;Greenough, T.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.51-68
    • /
    • 2007
  • High-strength concrete (HSC) is becoming increasingly attractive for various construction projects since it offers a multitude of benefits over normal-strength concrete (NSC). Unfortunately, current design provisions for shear capacity of RC slender beams are generally based on data developed for NSC members having a compressive strength of up to 50 MPa, with limited recommendations on the use of HSC. The failure of HSC beams is noticeably different than that of NSC beams since the transition zone between the cement paste and aggregates is much denser in HSC. Thus, unlike NSC beams in which micro-cracks propagate around aggregates, providing significant aggregate interlock, micro-cracks in HSC are trans-granular, resulting in relatively smoother fracture surfaces, thereby inhibiting aggregate interlock as a shear transfer mechanism and reducing the influence of compressive strength on the ultimate shear strength of HSC beams. In this study, a new approach based on genetic algorithms (GAs) was used to predict the shear capacity of both NSC and HSC slender beams without shear reinforcement. Shear capacity predictions of the GA model were compared to calculations of four other commonly used methods: the ACI method, CSA method, Eurocode-2, and Zsutty's equation. A parametric study was conducted to evaluate the ability of the GA model to capture the effect of basic shear design parameters on the behaviour of reinforced concrete (RC) beams under shear loading. The parameters investigated include compressivestrength, amount of longitudinal reinforcement, and beam's depth. It was found that the GA model provided more accurate evaluation of shear capacity compared to that of the other common methods and better captured the influence of the significant shear design parameters. Therefore, the GA model offers an attractive user-friendly alternative to conventional shear design methods.

Experimental Study on Behavior of Bonding between PSC Girders and Precast Decks (PSC 거더와 프리캐스트 바닥판간 부착 강도 평가를 위한 실험적 연구)

  • Kim In Gyu;Chung Chul Hun;Shim Chang Su;Kim Seong Woon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.770-773
    • /
    • 2004
  • The full-width, full-depth precast panel system is very efficient for the rehabilitation of deteriorated decks as well as for new bridge construction.. The horizontal bond strength at the interface between the two interconnected elements is of primary importance in order to achieve composite action. The strength of the bond between the two precast members should be high enough to prevent any progressive slip from taking place. However, the case when both of the interconnected elements are precast members bonded by means of grout, is not currently addressed by KBDC or AASHTO. This is the main impetus for this study. A total 43 push-off tests were performed to evaluate the horizontal bond strength and to recommend the best practice for the system. Test parameters included different interface surface conditions, different amount and different types of shear connectors. The presence of the shear keys at the top surface of the beam increased the interface bond capacity tremendously compared to the bond capacity with a different surface conditions.

  • PDF