• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.033 seconds

Development and Application of a Self Climbing Safety Fence for Construction Building (건축공사용 안전펜스 공법의 개발 및 적용)

  • Choi Min-Woo;Roh Whan-Gil;Lee Jae-Yong;Lee Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.3 s.3
    • /
    • pp.108-115
    • /
    • 2000
  • The average height of buildings in most cities is increasing in an effort to more effectively use land. In addition, as construction technology develops, rapid construction methods have been pursued. However, while there have been great strides in construction technology, the development of a temporary structure that can support the high-rise building under construction and the rapid construction methods has been relatively limited. If the temporary structure is not built on an outer wall of a building being constructed, a worker may be injured or killed in a fall and building materials such as blocks and other objects may fall to the ground, causing the build-up of trash around the building and possible injuries to persons in proximity to the building. This paper proposes a Self Climbing Safety Fence for construction building(SCfence). SCfence was developed to solve the above problems, a tent has been setup to cover the outer wall of the building, or a falling preventing net has been pitched in a direction perpendicular to the outer wall of the building. A case study was performed to verify the validity of SCfence through comparing the safety and cost experience between SCfence and the existing method.

  • PDF

The Korea Academia-Industrial cooperation Society (유리섬유 복합재료를 이용한 화재 비상통로용 스크린 소재 성능에 관한 연구)

  • Lee, Jung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.653-659
    • /
    • 2018
  • High-rise buildings and complex facilities are a representative urban system for the masses, and it requires an increasing role of commodity and safety. Smoke and toxic gasses can cause accidents due to fire in these systems. The purpose of this study is to develop a fiber screen material for emergency evacuation passages that can be avoided quickly and safely in cases of disasters. The fiber screen material is applicable to folding devices for emergency evacuation passages. The material is different from general steel material in that it is lightweight with less burden during storage for a long time in a roll form in a folding device. It also has an excellent secondary function in that it is less affected by radiant heat. Three kinds of fiber screen materials were selected that have good flame retardancy and post-processing characteristics. A performance evaluation was performed by a heat shrinkage test, contact heat test, combustibility test, flame retardancy test, tensile strength test, and tear strength test. As a result, the lightweight fabric shows excellent performance through post-processing, and silicone resin coating can secure safety of the pizza by the fiber screen material performance and radiant heat. The optimum post-treatment conditions were evaluated by performing a burning test after coating two kinds of glass fibers and four types of flame-retardant silicone resins with different weight and thickness.

A Study on Output Enhancement Method of PV Array Using Electrical Circuit Reconfiguration Algorithm (전기적 회로절체 알고리즘에 의한 태양광 어레이의 출력향상 방안에 관한 연구)

  • Kim, Byung-Mok;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.9-17
    • /
    • 2020
  • Recently, RES (renewable energy source) projects have been spreading all over the world as an alternative to solve the shortage of energy and environmental problems caused by fossil fuel consumption. The Korean government also supported the policy and demonstration project to increase the proportion of renewable energy to 63.8[GW] until 2030, which is 20[%] of the total power generation. On the other hand, output loss of a PV array can occur when the surrounding high-rise buildings and trees shade a PV array. Therefore, this paper proposes an algorithm to improve the output loss of a PV array, which electrically changes a circuit configuration of PV modules by wiring and switching devices. Furthermore, this study modeled a PV system based on PSIM S/W, which was composed of a PV array, a circuit configuration device, and a grid-connected inverter. From the simulations results with the modeling and test device, the existing method showed no output when 50% of the shade occurs in PV modules. In contrast, the proposed method could produce the output because the voltage in the PV module could be restored to 246[V], and the operation efficiency of the PV system could be improved by the operation algorithm of the circuit configuration device.

Integrated analysis and design of composite beams with flexible shear connectors under sagging and hogging moments

  • Wang, A.J.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.459-477
    • /
    • 2006
  • A theoretical research project is undertaken to develop integrated analysis and design tools for long span composite beams in modern high-rise buildings, and it aims to develop non-linear finite element models for practical design of composite beams. As the first paper in the series, this paper presents the development study as well as the calibration exercise of the proposed finite element models for simply supported composite beams. Other practical issues such as continuous composite beams, the provision of web openings for passage of building services, the partial continuity offered by the connections to columns as well as the behaviour of both unprotected and protected composite beams under fires will be reported separately. In this paper, details of the finite elements and the material models for both steel and reinforced concrete are first described, and finite element studies of composite beams with full details of test data are then presented. It should be noted that in the proposed finite element models, both steel beams and concrete slabs are modelled with two dimensional plane stress elements whose widths are assigned to be equal to the widths of concrete flanges, and the flange widths and the web thicknesses of steel beams as appropriate. Moreover, each shear connector is modelled with one horizontal spring and one vertical spring to simulate its longitudinal shear and pull-out actions based on measured load-slippage curves of push-out tests of shear connectors. The numerical results are then carefully analyzed and compared with the corresponding test results in terms of load mid-span deflection curves as well as load end-slippage curves. Other deformation characteristics of the composite beams such as stress and strain distributions across the composite cross-sections as well as distributions of shear forces and slippages in shear connectors along the beam spans are also examined in details. It is shown that the numerical results of the composite beams compare well with the test data in terms of various load-deformation characteristics along the entire deformation ranges. Hence, the proposed analysis and design tools are considered to be simple and yet effective for composite beams with practical geometrical dimensions and arrangements. Structural engineers are strongly encouraged to employ the models in their practical work to exploit the full advantages offered by composite construction.

A Study on the Priority Analysis of Work Delay Factors in Steal-frame Work using FMEA (FMEA를 활용한 철골공사 작업지연요인의 중요도에 관한 연구)

  • Lee, Hyun-Chul;Lee, Jae-Hong;Go, Seong-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.1
    • /
    • pp.91-101
    • /
    • 2009
  • The factors of uncertainty such as work delay could cause many problems, for example, increase of construction cost and terms of work, and the deterioration of quality. Because of these, the uncertainty risk is regarded as an important management factor to obtain the success of construction project. So, the systematic management plan about the uncertainty factors is needed because it plays an important role in the completion of entire project. And also analysis of some factors which can cause the work delay can be one way of improving construction project's certainty and making it competitive. In this reason, we have to make an effort to set a priority based on analysis of quantitatively numerical value about work delay factors to manage them effectively. Thus, this study aims to suggest the basic data for the effective management and prevention of work delay in steel-frame work which is progressive actively now, along with increasing of demand of high-rise buildings by analyzing each reasons of work delay factors and also by suggesting important management factors that are coded according to each construction work using FMEA method which could give a data about the importance of work delay factors through quantitatively numerical value.

Analysis of the Thermal Environment around an Urban Green Area in Seoul, Korea Using Climate Analysis Seoul (CAS) (Climate Analysis Seoul (CAS)를 이용한 서울 도심 녹지 주변의 열 환경 분석)

  • Lee, Jisu;Lee, Young-Gon;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.413-421
    • /
    • 2016
  • Climate Analysis Seoul (CAS) which provides gridded data relevant for thermal assessment was applied to one of the urban green areas, the Seonjeongneung, in Seoul, Korea. The thermal environment in the Seonjeongneung was evaluated from the CAS simulation for the five heat-wave issued cases during the last five years (2011~2015). The CAS has been improved continuously since it was developed. An updated version with a higher resolution of the CAS simulation domain and an addition of the vegetation information was used in this study. The influence of vegetation in the Seonjeongneung is estimated through the amount of the cold air generation ($Q_{ca}$) and air temperature deviation at each grid points, which are calculated by incorporating Geographic Information System (GIS) analysis on the simulation domain and meteorological analysis with the METeorology and atmospheric PHOtochemistry mesoscale MODel (MetPhoMod) in the CAS. The average amount of the cold air generation ($Q_{ca}$) at the Seonjeongneung is about $25.5m^3m^{-2}h^{-1}$ for the whole cases, and this value is similar to the ones in a forest or a well-wooded region. The average value of the total air temperature deviation (TD) is $-2.54^{\circ}C$ at the Seonjeongneung for the five cases. However, this cooling effect of the urban green area disappeared when the region is replaced by high-rise buildings in the CAS simulation. The $Q_{ca}$ drastically decreases to about $1.1m^3m^{-2}h^{-1}$ and the average TD shows an increase of $1.14^{\circ}C$ for the same events. This result shows that the vegetation in the Seonjeongneung supposes to keep down temperature during the heat-wave issued day and the average cooling effect of the green region is $3.68^{\circ}C$ quantitatively from the TD difference of the two simulations. The cooling effect represented with the TD difference is larger than $0.3^{\circ}C$ within 200 m distance from the boundary of the Seonjeongneung. Further improvements of the thermodynamical and advection processes above the model surface are required to consider more accurate assessment of the cooling effect for the urban green area.

A Study on Updating of Digital Map using Beacon GPS (Beacon GPS를 이용한 수치지도 갱신에 관한 연구)

  • Yun, Bu-Yeol;Moon, Doo-Youl;Hong, Soon-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2006
  • Nowadays, various digital maps on a reduced scale were drawn in Korea including the topographic series of a nation. Though these digital maps are drawn and revised by using aerial photograph or satellite image, there are some problems that it is difficult to revise or renew the topography and natural feature immediately which changes frequently. As the countermeasures of these problems we use GPS accumbency method, which provides user with convenience and accumbency accuracy which is required to revise and renew digital maps. But acquiring correct position by using GPS only may cause not a few errors because of environmental effect of satellite signal errors that GPS obtains. Although accumulated errors which is the major problem of existing method was diminished owing to the position signal received from satellite which is about 20,183km above, the area that can not receives the signal is occur such as woods and high-rise buildings space. And because of the GDOP (Geometry Dilution of Precision) of GPS satellite and the periodically changing orbit of the satellite, the position calculating problems occur. For settlement of these problems and accurate position determination, DGPS (Differential GPS) is indispensably needed. So, in this study, by adapting Radio Beacon Receiver for marine position determination which is the most convenience method of DGPS methods, we elevated accuracy of modification and renewal of digital map and, having wide application in various measurements, proposed the rapid measurement method about widespread area. In this study, wewant to propose the work scheme of rapid modification and renewal of digital map by using Beacon GPS which is comparatively cheap of all the DGPS methods and which makes it possible to measure independently.

  • PDF

Benefit·Cost Analysis of Combine Method Using Hollow Precast Concrete Column (중공 PC기둥 복합공법의 편익-비용 분석)

  • Kim, Jae-Yeob;Park, Byeong-Hun;Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • Because of the shortage of construction workers due to The rising labor costs and an aging labor force, construction time has been extended. As a solution, The construction time of high-rise buildings can be reduced by adopting precast concrete construction methods. Most relevant studies have focused on the development and structural analysis of such methods and not on their construction management. Therefore, this study focused on the construction management of the hollow precast concrete column (HPC) method. The objective of this study was to evaluate the performance of HPC formulations through the analytic hierarchy process and benefit-cost analysis. After a gap analysis of the available literature and expert interviews, the evaluation criteria were selected. A questionnaire survey was administered to professionals with ample experience in precast concrete construction for the pair-wise evaluation of the benefit and costs of the HPC method. The results show that the benefits of the HPC method outweighed its costs. Therefore, the HPC method is a suitable substitute for the half-slab method.

Application of Total Station for Structure and Terrain Displacement Monitoring (구조물 및 지형변위 모니터링을 위한 토털스테이션의 활용)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.582-587
    • /
    • 2020
  • Recently, disasters caused by extreme weather and the damage caused by them are increasing worldwide. The interest in disasters, such as earthquakes, typhoons, and ground subsidence, is increasing in Korea. Korea has enacted a special law based on disaster management, and has built monitoring systems for individual facility units by building precision sensors and related systems to measure the displacement status of long bridges and high-rise composite buildings. On the other hand, the application of a real-time monitoring system is insufficient for slopes, open-pit mines, small and medium structures due to weather, measurement methods, cost, and constant monitoring difficulties. In this study, the displacement monitoring method using the total station was studied and the applicability was suggested through the experiment. Through the research, the concept and operation flow of a monitoring system that can measure the displacement of the terrain or the structure using the total station was presented. The monitoring system allows the user to select the location and operation method of the equipment so that the equipment can be installed according to the site situation, and set the number of observations, the period, and the observation range of the object. Using the experiment on the monitoring system, the station was monitored with precision within 5mm, and it was suggested that the displacement of the object can be monitored using the total station. Further research will be needed to assess the applicability of monitoring to real slopes and structures.

Behavior Characteristics of Shear Connector for Composite Behavior of Steel Composite Columns (강합성 부재의 합성거동을 위한 전단 연결재의 거동 특성)

  • Won, Deok Hee;Han, Taek Hee;Kim, Seungjun;Lee, Jung Hwa;Kang, Young Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1993-1999
    • /
    • 2013
  • Steel composite structures have been studied in various areas such as bridges, high rise buildings, and wind towers. They show excellent structural performance through overcoming of the weaknesses of steel and concrete. Although various methods were already developed to achieve full composite behavior between steel and concrete in flexural members, the number of studies regarding composite columns is quite limited. If slip occurs between concrete and steel under external loads, the performance of the composite column would be reduced significantly. Connection methods ensuring full composite action between steel and concrete must be suggested. This paper investigated about structural behavior of shear studs through a series of experimental tests. Extensive parameters were also performed to understand the effects of the diameter of stud, space of stud and height of concrete. The present study provides fundamental bases for further development of design method of shear studs in composite columns.