• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.025 seconds

Analysis of Performance of Building Integrated PV System of Cold Facade type (Cold facade형 BIPV시스템의 발전성능 분석)

  • Kim, Hyun-II;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Shu, Seung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.275-280
    • /
    • 2008
  • Photovoltaic(PV) permit the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of BIPV system of cold facade type and analyzed of performance of BIPV system of cold facade type. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 73.1%.

  • PDF

A Study on the Characteristics of Dynamic Behaviors for the Spatial Structures using Equivalent Lumped Mass Model (중간 면진층을 가지는 래티스 돔 구조물의 병렬 다질점계 등가모델을 이용한 동적 거동 특성에 관한 연구)

  • Han Sang-Eul;Lee Sang-Ju;Kim Min-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.187-194
    • /
    • 2006
  • Generally, earthquake-resistant structural systems have to ensure the sufficient stiffness and ductility for stability In this paper, the spatial structures are applied an isolation system to boundary parts between roof systems and sub-structures. So, it is necessary to examine the characteristics of dynamic behaviors of spatial structures governed by higher modes rather than lower modes different from the cases of high-rise buildings. The objectives of this paper are to develop the equivalent lumped mass model to simplify an analytical processes and to investigate the dynamic behaviors of roof systems according to the mass and stiffness of sub-structures as a fundamental study of performance design for the spatial structures.

Plastic Deformation Capacity of Steel Beam-to-Column Connection under Long-duration Earthquake

  • Yamada, Satoshi;Jiao, Yu;Narihara, Hiroyuki;Yasuda, Satoshi;Hasegawa, Takashi
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.231-241
    • /
    • 2014
  • Ductile fracture is one of the most common failure modes of steel beam-to-column connections in moment resisting frames. Most proposed evaluation methods of the plastic deformation capacity of a beam until ductile fracture are based on steel beam tests, where the material's yield strength/ratio, the beam's moment gradient, and loading history are the most important parameters. It is impossible and unpractical to cover all these parameters in real tests. Therefore, a new attempt to evaluate a beam's plastic deformation capacity through analysis is introduced in this paper. Another important issue is about the loading histories. Recent years, the effect on the structural component under long-duration ground motion has drawn great attentions. Steel beams tends to experience a large number of loading cycles with small amplitudes during long-duration earthquakes. However, current research often focuses on the beam's behavior under standard incremental loading protocols recommended by respective countries. In this paper, the plastic deformation capacity of steel beams subjected to long duration ground motions was evaluated through analytical methodology.

A Study on the Proposals for Improvement of the National Emergency Management System based on Past Disaster Cases (과거 재난사례에 기초한 국가차원의 재난관리체계 확립방향)

  • Kim, Jong-Ouk;Cho, Young-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.5
    • /
    • pp.24-31
    • /
    • 2010
  • Today many people live in various risks due to rapid industrialization. High-rise buildings and underground facilities are increasing in the heart of the city. It probably would be developed into a gigantic disasters complicated with sudden climate change. To effectively cope with these disasters, National Emergency Management Agency was set up, but it has been pointed that the Agency's role is limited to treat the problems. Therefore, emergency management system and disaster case study were reviewed and analyzed. And a Proposals for Improvement of the National Emergency Management System based on Past Disaster Cases was suggested in this paper.

A Study on the Selection and Stability of Slings and Lugs of Mobile Cranes (이동식 크레인의 슬링.러그 선정 및 안정성 검토 연구)

  • Kim, Sun-Kuk;Seo, Jong-Min;Ho, Jong-Kwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.6
    • /
    • pp.164-174
    • /
    • 2008
  • As buildings become larger, higher and more complex in most construction sites, construction projects have to deal with transportation of more materials, labor and equipment, necessitating more use of construction equipment. Notably, in the high-rise building and plant construction projects mobile cranes are adopted more frequently among different types of construction machinery, which also results in serious industrial accidents relating to the use of crane. To reduce serious industrial accidents involving cranes, researches on its stability is in need. The research herein aims to study how to select sling and lug of mobile crane and review its stability. The research outcomes herein will make considerable contributions to selecting mobile cranes efficiently and ensuring their stability.

A basic study on the development of intelligent tower crane using IT (멀티미디어와 RFID 등 IT를 활용한 지능형 타워크레인 개발 기초연구)

  • Han Yong-Woo;Cho Hun-Hee;Lee You Seop;Kang Tai Kyung;Kim Jong Sum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.625-628
    • /
    • 2004
  • Even though the tower crane is a major equipment in a construction of high rise buildings, there are lack of studies of it. This study is presenting a framework of developing a intelligent tower crane applied with the technology of machine-vision, RFID(Radio Frequency Identification), or GPS(Global positioning System) and proposing the prototype of machine-vision module, sub module of this Framework. Through monitoring form CCTV(Closed Circuit Television) and LCD(Liquid Crystal Display) in machine-module the real time communication between in-site workers and crane operator is possible. this will improve the productivity and safety of the tower crane.

  • PDF

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.

Seismic design rules for ductile Eurocode-compliant two-storey X concentrically braced frames

  • Costanzo, Silvia;D'Aniello, Mario;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.273-291
    • /
    • 2020
  • Two-storey X-bracings are currently very popular in European practice, as respect to chevron and simple X bracings, owing to the advantages of reducing the bending demand in the brace-intercepted beams in V and inverted-V configurations and optimizing the design of gusset plate connections. However, rules for two-storey X braced frames are not clearly specified within current version of EN1998-1, thus leading to different interpretations of the code by designers. The research presented in this paper is addressed at investigating the seismic behaviour of two-storey X concentrically braced frames in order to revise the design rules within EN1998-1. Therefore, five different design criteria are discussed, and their effectiveness is investigated. With this aim, a comprehensive numerical parametric study is carried out considering a set of planar frames extracted from a set of structural archetypes that are representative of regular low, medium and high-rise buildings. The obtained results show that the proposed design criteria ensure satisfactory seismic performance.

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.

Study on the Ultimate Strength of Gusset Plate-Circular Hollow Section(CHS) Joint (거셋플레이트-원형강관 접합부의 극한내력 도출에 관한 연구)

  • Kim, Woo-Bum;Shin, Kyung-Jae;Choi, Hyung-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.523-533
    • /
    • 2011
  • The demand for the circular hollow section (CHS) has been increasing due to its structural advantage in long-span structures and high-rise buildings. There are not enough researches on the CHS structure, though. The behavior of the gusset plate CHS joint, to predict the ultimate strength, is not easy to predict because the load deflection curve does not show consistency. Therefore, in this study, experiments and finite element analysis (FEA) were carried out to determine the ultimate strength according to the proposed ultimate deformation limit. Finally, a reasonable ultimate strength formula was proposed through comparisons with other design guides.