• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.027 seconds

Productivity Analysis of Reinforced Concrete Works and Tower Crane Working Ratio for High-rise Apartment Buildings (초고층 공동주택 RC 공사의 생산성 및 타워크레인 가동율 분석)

  • Kwon, Jihun;Huh, Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • The productivity of rebar-work and form-work was analyzed with data collected from an actual high-rise construction project, and the actual utilization rates of three tower cranes were also investigated. It was found that the average productivity of the form-work increased from 12.00~8.71(㎡/man·day) in the underground and above-ground/lower-floor to 11.94~20.73(㎡/man·day) in the standard floor. Comparing the productivity of core area to outer, the former was found to be about 11% higher. Moreover, the rebar-work productivity of the outer area(1.12 ton/man·day) was approximately 9.6% higher than that of the core area for the standard floor. The average utilization rates of three TC were surveyed to be about 63.49%, and it was revealed that rainy weather(6.1%), strong winds(6.1%), holidays(17.8%), TC lifting work(5.8%), and other failures and repairs(0.07%) were the causes of non-operation. These research results are expected to be beneficial data in planning and managing the process of high-rise RC construction works in the future.

Air Temperature Modification of an Urban Neighborhood Park in Summer - Hyowon Park, Suwon-si, Gyeonggi-do- (여름철 도시근린공원의 기온저감 효과 - 경기도 수원시 효원공원 -)

  • Park, Sookuk;Jo, Sangman;Hyun, Cheolji;Kong, Hak-Yang;Kim, Seunghyun;Shin, Youngkyu
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1057-1072
    • /
    • 2017
  • In order to investigate the effect of air temperature reduction on an urban neighborhood park, air temperature data from five inside locations (forest, pine tree, lawn, brick and pergola) depending on surface types and three outside locations (Suwon, Maetan and Kwonsun) depending on urban forms were collected during the summer 2016 and compared. The forest location had the lowest mean air temperature amongst all locations sampled, though the mean difference between this and the other four locations in the park was relatively small ($0.2-0.5^{\circ}C$). In the daytime, the greatest mean difference between the forest location and the two locations exposed to direct beam solar radiation (brick and lawn) was $0.5-0.8^{\circ}C$ (Max. $1.6-2.1^{\circ}C$). In the nighttime, the mean difference between the forest location and the other four locations in the park was small, though differences between the forest location and locations with grass cover (pine tree and lawn) reached a maximum of $0.9-1.7^{\circ}C$. Comparing air temperature between sunny and shaded locations, the shaded locations showed a maximum of $1.5^{\circ}C$ lower temperature in the daytime and $0.7^{\circ}C$ higher in the nighttime. Comparing the air temperature of the forest location with those of the residential (Kwonsun) and apartment (Maetan) locations, the mean air temperature difference was $0.8-1.0^{\circ}C$, higher than those measured between the forest location and the other park locations. The temperatures measured in the forest location were mean $0.9-1.3^{\circ}C$ (Max. $2.0-3.9^{\circ}C$) lower in the daytime than for the residential and apartment locations and mean $0.4-1.0^{\circ}C$ (Max. $1.3-3.1^{\circ}C$) lower in the nighttime. During the hottest period of each month, the difference was greater than the mean monthly differences, with temperatures in the residential and apartment locations mean $1.0-1.6^{\circ}C$ higher than those measured in the forest location. The effect of air temperature reduction on sampling locations within the park and a relatively high thermal environment on the urban sampling locations was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with a high sky view factor and surface types with high evapotranspiration potential (e.g. grass) showed the maximum air temperature reduction. In the urban areas outside the park, the low-rise building area, with a high sky view factor, showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, while in the nighttime the area with high-rise buildings, and hence a low sky view factor, showed high air temperature due to the effect of terrestrial (longwave) radiation emitted by surrounding high-rise building surfaces. The effect of air temperature reduction on the park with a high thermal environment in the city was clearly evident in the daytime, and the shading effect of trees in the forest location must be most effective. In the nighttime, areas with high sky view factor and surface types (e.g., grass) with evapotranspiration effect showed maximum air temperature reduction. In the urban areas outside the park, the high sky view factor area (low-rise building area) showed high air temperature due to the effect of solar (shortwave) radiation during the daytime, but in the nighttime the low sky view factor area (high-rise building area) showed high air temperature due to the effect of terrestrial (longwave) radiation emitted surrounding high-rise building surfaces.

An Experimental Study on Manufacturing Ultra-Hihg Strength Concrete of 2300kgf/$\textrm{cm}^2$ Compressive Strength -Part 1, The Experimental Program and Preliminary Experiment- (압축강도 2300kgf/$\textrm{cm}^2$의 초고강도콘크리트의 개발에 관한 실험적 연구 -제 1보, 실험 계획 및 예비실험을 중심으로-)

  • 최희용;김규용;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.246-251
    • /
    • 1995
  • To reduce the size of structural members high strength concrete has recently been utilized for structrue such as ultra-high-rise buildings and prestressed concrete bridges in North America. and its compressive strength has gone up to 1300kgf/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project, and this project purposed to develop the design compressive sstength of 1200kgf/$\textrm{cm}^2$. Considering these circumstance. the aim of this aim of this experimental study is to develop ultra-high-strength concrete with compressive stength over 2300kgf/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence on manufacturing of ultrahigh-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse aggregate, and the replacement proportion of cement by silica fume. The results of this expermental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 2300kgf/$\textrm{cm}^2$.

  • PDF

Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading

  • Tang, Chao-Wei
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.243-253
    • /
    • 2018
  • In recent years, concrete-filled box or tubular columns have been commonly used in high-rise buildings. However, a number of fire test results show that there are significant differences between high strength concrete (HSC) and normal strength concrete (NSC) after being subjected to high temperatures. Therefore, this paper presents an investigation on the fire resistance of HSC filled steel tubular columns (CFTCs) under combined temperature and loading. Two groups of full-size specimens were fabricated to consider the effect of type of concrete infilling (plain and reinforced) and the load level on the fire resistance of CFTCs. Prior to fire test, a constant compressive load (i.e., load level for fire design) was applied to the column specimens. Thermal load was then applied on the column specimens in form of ISO 834 standard fire curve in a large-scale laboratory furnace until the set experiment termination condition was reached. The results demonstrate that the higher the axial load level, the worse the fire resistance. Moreover, in the bar-reinforced concrete-filled steel tubular columns, the presence of rebars not only decreased the spread of cracks and the sudden loss of strength, but also contributed to the load-carrying capacity of the concrete core.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

Evaluation of Heating and Cooling Thermal Output Characteristics of Prefabricated Steel Wall Panel System for Radiant Heating and Cooling (강판 마감형 조립식 벽패널 복사냉난방시스템의 냉난방 방열 특성 평가)

  • Lim, Jae-Han;Koo, Bo-Kyoung;Kim, Sung-Im;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.70-77
    • /
    • 2013
  • Recently the radiant panel heating and cooling system has been regarded as an alternative of low temperature heating and high temperature cooling by applying the renewable energy sources to the heating and cooling of buildings. Especially this system can be used as HVAC system alternatives in super high-rise buildings for energy saving and thermal comfort. Also it can be possible to reduce the plenum space because the minimum ventilation air will be supplied into the space. This study focused on the evaluation the basic characteristics of thermal output in prefabricated steel wall panel system for radiant heating and cooling. In order to evaluate the thermal output according to both various supply water temperatures and supply water flow rates, three-dimensional dynamic heat transfer analysis was performed. As results, for the heating mode, thermal output increased by 26% with the supply temperature increasing by $5^{\circ}C$. The surface temperature of panels range within $1{\sim}3^{\circ}C$. For the cooling mode, thermal output decreased by 18.2% with the supply temperature increasing by $2^{\circ}C$. The surface temperature of panels range within $0.5{\sim}1^{\circ}C$ and it was shown the even temperature distribution.

Improving Construability by Analyzing Influencing Factors of Core-Wall Construction (코어월 선행공법의 영향 요소 분석을 통한 시공성 향상에 관한 연구)

  • Ku Seong-Hun;Ahn Byung-Ju;Kim Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.606-609
    • /
    • 2003
  • The need of high-rise building is increased, because population is concentrated and the building site is limited in the city. Owing to this request buildings in downtown become more high rise. Therefore, we must develop the design, structure, high technology and materials. The core wall construction is one of the method of construction preferred because it cut down the cost and decrease the schedule. According to research in this study, we found that the selection process of core wall system form is focused on the schedule and cost. the construability is relatively failed to notice. As a result, the problem of construability is happened under the construction, it lead to delay the schedule and increase the cost. The purpose of this study is suggest to decision making process of core wall system form considered improving construction productivity.

  • PDF

A Case Study of a Foundation Design and Construction of a High-rise Building Applying Bi-directional Pile Load Test(BD PLT) (양방향 말뚝재하시험(BD PLT)을 적용한 초고층 건축구조물의 기초설계 및 시공사례)

  • Kim, Sung-Ho;Lee, Min-Hee;Hwang, Geun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.539-550
    • /
    • 2006
  • New Songdo city is currently developing on the reclaimed land on a marine deposit and among the development the four sixty-four(64) stories high rise buildings are under construction at block 125. The ground condition of the site is comprised of a deep seated weathered rock staratum under a soft marine deposit layer. As a foundation system, a bored pile was planned to transmit the applied load to the stable layer. In this study, the behavior of the weathered rock especially locating at a upper part having a weak strength(HWR, MWR) has been evaluated through series of hi-directional pile load test(BD PLT) carried out on the 3 drilled shafts socketed in a weathered rock layer in a design stage. It has been planned to increase the effect of the tests that the length of test piles was prepared short enough to perform the test under a high stress. The summary of the design reflecting the test results has been made up. In addition, the 4 hi-directional pile tests excuted on the working piles during the construction stage for the purpose of confirmation and the evaluation of the adequacy of the pile behaviors have been included in this study.

  • PDF

Seismic behavior of composite walls with encased steel truss

  • Wu, Yun-tian;Kang, Dao-yang;Su, Yi-ting;Yang, Yeong-bin
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.449-472
    • /
    • 2016
  • This paper studies the seismic behavior of reinforced concrete (RC) walls with encased cold-formed and thin-walled (CFTW) steel truss, which can be used as an alternative to the conventional RC walls or steel reinforced concrete (SRC) composite walls for high-rise buildings in high seismic regions. Seven one-fourth scaled RC wall specimens with encased CFTW steel truss were designed, manufactured and tested to failure under reversed cyclic lateral load and constant axial load. The test parameters were the axial load ratio, configuration and volumetric steel ratio of encased web brace. The behaviors of the test specimens, including damage formation, failure mode, hysteretic curves, stiffness degradation, ductility and energy dissipation, were examined. Test results indicate that the encased web braces can effectively improve the ductility and energy dissipation capacity of RC walls. The steel angles are more suitable to be used as the web brace than the latticed batten plates in enhancing the ductility and energy dissipation. Higher axial load ratio is beneficial to lateral load capacity, but can result in reduced ductility and energy dissipation capacity. A volumetric ratio about 0.25% of encased web brace is believed cost-effective in ensuring satisfactory seismic performance of RC walls. The axial load ratio should not exceed the maximum level, about 0.20 for the nominal value or about 0.50 for the design value. Numerical analyses were performed to predict the backbone curves of the specimens and calculation formula from the Chinese Code for Design of Composite Structures was used to predict the maximum lateral load capacity. The comparison shows good agreement between the test and predicted results.

Study on Deflection Evaluation for High-strength Concrete of KCI Specification and Eurocode 2 (콘크리트구조설계기준과 Eurocode 2의 고강도 콘크리트 처짐 산정에 관한 연구)

  • Lee, In-Ju;Kim, Tae-Wan;Kim, Sung-Hu;Son, Chang-Du;Park, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.989-992
    • /
    • 2008
  • Recently, high-strength concrete has been frequently used for long-span bridges and high-rise buildings. Deflection of reinforced concrete structures is uncertain, so that many researchers have proposed various equations in order to predict deflection through experiments. Domestic concrete specification offers a procedure to evaluate deflection using effective moment of inertia which was proposed by Branson. However, it is inaccurate for high strength concrete compared to the method suggested in Eurocode 2 in that Eurocode 2 predicts deflection by using curvature integration of effective moment of inertia. In this study, experimental data about deflection of reinforced concrete beams were analyzed to compare domestic standard and Eurocode 2.

  • PDF