• Title/Summary/Keyword: high resolution DEM

Search Result 180, Processing Time 0.021 seconds

Sensitivity Analysis of the High-Resolution WISE-WRF Model with the Use of Surface Roughness Length in Seoul Metropolitan Areas (서울지역의 고해상도 WISE-WRF 모델의 지표면 거칠기 길이 개선에 따른 민감도 분석)

  • Jee, Joon-Bum;Jang, Min;Yi, Chaeyeon;Zo, Il-Sung;Kim, Bu-Yo;Park, Moon-Soo;Choi, Young-Jean
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.111-126
    • /
    • 2016
  • In the numerical weather model, surface properties can be defined by various parameters such as terrain height, landuse, surface albedo, soil moisture, surface emissivity, roughness length and so on. And these parameters need to be improved in the Seoul metropolitan area that established high-rise and complex buildings by urbanization at a recent time. The surface roughness length map is developed from digital elevation model (DEM) and it is implemented to the high-resolution numerical weather (WISE-WRF) model. Simulated results from WISE-WRF model are analyzed the relationship between meteorological variables to changes in the surface roughness length. Friction speed and wind speed are improved with various surface roughness in urban, these variables affected to temperature and relative humidity and hence the surface roughness length will affect to the precipitation and Planetary Boundary Layer (PBL) height. When surface variables by the WISE-WRF model are validated with Automatic Weather System (AWS) observations, NEW experiment is able to simulate more accurate than ORG experiment in temperature and wind speed. Especially, wind speed is overestimated over $2.5m\;s^{-1}$ on some AWS stations in Seoul and surrounding area but it improved with positive correlation and Root Mean Square Error (RMSE) below $2.5m\;s^{-1}$ in whole area. There are close relationship between surface roughness length and wind speed, and the change of surface variables lead to the change of location and duration of precipitation. As a result, the accuracy of WISE-WRF model is improved with the new surface roughness length retrieved from DEM, and its surface roughness length is important role in the high-resolution WISE-WRF model. By the way, the result in this study need various validation from retrieved the surface roughness length to numerical weather model simulations with observation data.

Estimation of Monthly Precipitation in North Korea Using PRISM and Digital Elevation Model (PRISM과 상세 지형정보에 근거한 북한지역 강수량 분포 추정)

  • Kim, Dae-Jun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • While high-definition precipitation maps with a 270 m spatial resolution are available for South Korea, there is little information on geospatial availability of precipitation water for the famine - plagued North Korea. The restricted data access and sparse observations prohibit application of the widely used PRISM (Parameter-elevation Regressions on Independent Slopes Model) to North Korea for fine-resolution mapping of precipitation. A hybrid method which complements the PRISM grid with a sub-grid scale elevation function is suggested to estimate precipitation for remote areas with little data such as North Korea. The fine scale elevation - precipitation regressions for four sloping aspects were derived from 546 observation points in South Korea. A 'virtual' elevation surface at a 270 m grid spacing was generated by inverse distance weighed averaging of the station elevations of 78 KMA (Korea Meteorological Administration) synoptic stations. A 'real' elevation surface made up from both 78 synoptic and 468 automated weather stations (AWS) was also generated and subtracted from the virtual surface to get elevation difference at each point. The same procedure was done for monthly precipitation to get the precipitation difference at each point. A regression analysis was applied to derive the aspect - specific coefficient of precipitation change with a unit increase in elevation. The elevation difference between 'virtual' and 'real' surface was calculated for each 270m grid points across North Korea and the regression coefficients were applied to obtain the precipitation corrections for the PRISM grid. The correction terms are now added to the PRISM generated low resolution (~2.4 km) precipitation map to produce the 270 m high resolution map compatible with those available for South Korea. According to the final product, the spatial average precipitation for entire territory of North Korea is 1,196 mm for a climatological normal year (1971-2000) with standard deviation of 298 mm.

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

An Analysis of Observational Environments for Solar Radiation Stations of Korea Meteorological Administration using the Digital Elevation Model and Solar Radiation Model (수치표고모델과 태양복사모델을 이용한 기상청 일사 관측소 관측환경 분석)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.119-134
    • /
    • 2019
  • In order to analyze the observational environment of solar radiation stations operated by the Korea Meteorological Administration (KMA), we used the digital elevation model (DEM) and the solar radiation model to calculate a topographical shading, sky view factor (SVF) and solar radiation by surrounding terrain. The sky line and SVF were calculated using high resolution DEM around 25 km of the solar stations. We analyzed the topographic effect by analyzing overlapped solar map with sky line. Particularly, Incheon station has low SVF whereas Cheongsong and Chupungryong station have high SVF. In order to validation the contribution of topographic effect, the solar radiation calculated using GWNU solar radiation model according to the sky line and SVF under the same meteorological conditions. As a result, direct, diffuse and global solar radiation were decreased by 12.0, 5.6, and 4.7% compared to plane surface on Cheongsong station. The 6 stations were decreased amount of mean daily solar radiation to the annual solar radiation. Among 42 stations, eight stations were analyzed as the urgent transfer stations or moving equipment quickly and more than half of stations (24) were required to review the observational environment. Since the DEM data do not include artifacts and vegetation around the station, the stations need a detail survey of observational environment.

Utilizing GSIS and High Resolution Satellite Imagery for Landform Analysis and Sight-Seeing Guidance (금오산 도립공원의 지형분석과 관광안내를 위한 GSIS와 고해상도 위성영상의 활용)

  • Lee, Jin-Duk;Choi, Young-Geun;Lee, Ho-Chan
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.03a
    • /
    • pp.156-161
    • /
    • 2002
  • 자연공원의 체계적인 관리를 위해서는 효율적인 자료수집과 처리, 그리고 합리적인 분석과정이 필요하며, 이러한 관점에서 지형공간정보체계와 위성원격탐사를 이용하는 공원관리 및 관광안내시스템의 개발이 요구되는 시점이다. 본 연구에서는 금오산 도립공원구역을 사례연구지역으로 GSIS(Geo-Spatial Information System)기법을 도입하여 수치지형도, 주제도, 위성영상 등으로부터 도형자료 및 비도형자료를 수집 처리하였다. DEM 생성을 통하여 얻어진 경사도, 사면방향, 지형단면, 지질 분석 등 주제별 지형분석을 행하였다. Landsat TM 위성자료로부터 토지피복분류와 NDVI 식생활력도를 추출하였고, 이 자료들로부터 GSIS 데이터베이스를 구축하였다. 또한 대상지역을 포함하는 Im 해상도의 IKONOS 위성자료를 처리하여 영상지도를 작성하고 DEM과 중합하여 3D 시각화를 구현하였다. 위성영상지도 및 3차원 경관도상에 주요 등산로 벡터자료를 중첩하여 표현하고, 5개 루트의 주요 등산로를 따라 3D 경관 및 문화재, 관리시설 등을 포함하는 동영상 파일을 제작하였다. 본 연구의 결과는 개발과 보존의 중도를 취하는 자연공원의 적정 토지이용을 위한 사전평가 자료 및 Web 기반 관광안내시스템을 구축하기 위한 기본데이터로 활용될 수 있을 것이다.

  • PDF

Accuracy Analysis of Aerial Triangulation Using Medium Format CCD Camera RCD105 (중형카메라의 항공삼각측량 정확도 분석)

  • Kang, Joon-Mook;Won, Jae-Ho;So, Jae-Kyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.251-252
    • /
    • 2010
  • Lately, airborne digital camera and airborne laser scanner in field of airborne surveying is used to build geography information such as DEM generation and terrain analysis. In this study, 3D position accuracy is compared medium format CCD camera RCD105 with high resolution airborne digital camera DMC. For this, test area was decided for aerial photograph and ground control points was selected in 1/1,000 scale digital map. In Result, Root Mean Square Error(RMSE) was analyzed between RCD105 and DMC after aerial triangulation.

  • PDF

Evaluation of The Image Segmentation Method for DEM Generation of Satellite Imagery (위성영상의 DEM 생성을 위한 영상분할 방법의 적합성 평가)

  • 이효성;송정헌;김용일;안기원
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.149-157
    • /
    • 2003
  • In this study, for efficient replacement of sensor modelling of high-resolution satellite imagery, image segmentation method is applied to the test area of the SPOT-3 satellite imagery. After that, a third-order polynomial model in the sectioned area is compared with the RFM which Is to the entire in the test area. As results, plane error of the third-order polynomial model is lower(approximately 0.8m) than that of RFM. On the other hand, height error of RFM is lower(approximately 1.0m).

The Utilization of DEM Made by Digital Map in Height Evaluation of Buildings in a Flying Safety Area (비행안전구역 건물 높이 평가에서 수치지형도로 제작한 DEM의 활용성)

  • Park, Jong-Chul;Kim, Man-Kyu;Jung, Woong-Sun;Han, Gyu-Cheol;Ryu, Young-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.78-95
    • /
    • 2011
  • This study has developed various DEMs with different spatial resolutions using many different interpolation methods with the aid of a 1:5,000 digital map. In addition, this study has evaluated the vertical accuracy of various DEMs constructed by check point data obtained from the network RTK GPS survey. The obtained results suggest that a DEM developed from the TIN-based Terrain method performs well in evaluating height restriction of buildings in a flying safety area considering general RMSE values, land-type RMSE values and profile evaluation results, etc. And, it has been found that three meters is the right spatial resolution for a DEM in evaluating height restriction of buildings in a flying safety area. Meanwhile, elevation values obtained by the DEM are not point estimation values but interval estimation values. This can be used to check whether the height of buildings in the vicinity of an airfield violates height limitation values of the area. To check whether the height of buildings measured in interval estimation values violates height limitation values of the area, this study has adopted three steps: 1) high probability of violation, 2) low probability of violation, 3) inconclusiveness about the violation. The obtained results will provide an important basis for developing a GIS related to the evaluation of height restriction of buildings in the vicinity of an airfield. Furthermore, although results are limited to the study area, the vertical accuracy values of the DEM constructed from a two-dimensional digital map may provide useful information to researchers who try to use DEMs.

RPC MODEL FOR ORTHORECTIFYING VHRS IMAGE

  • Ke, Luong Chinh
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.631-634
    • /
    • 2006
  • Three main important sources for establishing GIS are the orthomap in scale 1:5 000 with Ground Sampling Distance of 0,5m; DEM/DTM data with height error of ${\pm}$1,0m and topographic map in scale 1: 10 000. The new era with Very High Resolution Satellite (VHRS) images as IKONOS, QuickBird, EROS, OrbView and other ones having Ground Sampling Distance (GSD) even lower than 1m has been in potential for producing orthomap in large scale 1:5 000, to update existing maps, to compile general-purpose or thematic maps and for GIS. The accuracy of orthomap generated from VHRS image affects strongly on GIS reliability. Nevertheless, orthomap accuracy taken from VHRS image is at first dependent on chosen sensor geometrical models. This paper presents, at fist, theoretical basic of the Rational Polynomial Coefficient (RPC) model installed in the commercial ImageStation Systems, realized for orthorectifying VHRS images. The RPC model of VHRS image is a replacement camera mode that represents the indirect relation between terrain and its image acquired on the flight orbit. At the end of this paper the practical accuracies of IKONOS and QuickBird image orthorectified by RPC model on Canadian PCI Geomatica System have been presented. They are important indication for practical application of producing digital orthomaps.

  • PDF

Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features (경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.