• 제목/요약/키워드: high rate of loading

검색결과 611건 처리시간 0.031초

산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(II) -유기물 충격 부하가 미생물 성장에 미치는 영향- (A Study on an Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(II) -Effect of Organic Shock Loading Rate on Biomass Characteristics-)

  • 안갑환;박영식;최윤찬;김동석;송승구
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.325-330
    • /
    • 1993
  • A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 cm/sec and temperature, 22$\pm$$1^{\circ}C$, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/m$^3$ㆍday, respectively. Within the F/M ratio ranged 0.4 to 2.0 kgCOD/kgVSSㆍday, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 kgCOD/kgVSSㆍday, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSSㆍday. The average biomass concentrations were 7800, 14950 and 27532 mg/l on the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/$\textrm{m}^3$ㆍday, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.

  • PDF

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • 제37권1호
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

Computational simulations of concrete behaviour under dynamic conditions using elasto-visco-plastic model with non-local softening

  • Marzec, Ireneusz;Tejchman, Jacek;Winnicki, Andrzej
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.515-545
    • /
    • 2015
  • The paper presents results of FE simulations of the strain-rate sensitive concrete behaviour under dynamic loading at the macroscopic level. To take the loading velocity effect into account, viscosity, stress modifications and inertial effects were included into a rate-independent elasto-plastic formulation. In addition, a decrease of the material stiffness was considered for a very high loading velocity to simulate fragmentation. In order to ensure the mesh-independence and to properly reproduce strain localization in the entire range of loading velocities, a constitutive formulation was enhanced by a characteristic length of micro-structure using a non-local theory. Numerical results were compared with corresponding laboratory tests and available analytical formulae.

Tension-Compression Asymmetry in the Off-Axis Nonlinear Rate-Dependent Behavior of a Unidirectional Carbon/Epoxy Laminate at High Temperature and Incorporation into Viscoplasticity Modeling

  • Kawai, M.;Zhang, J.Q.;Saito, S.;Xiao, Y.;Hatta, H.
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.265-285
    • /
    • 2009
  • Off-axis compressive deformation behavior of a unidirectional CFRP laminate at high temperature and its strain-rate dependence in a quasi-static range are examined for various fiber orientations. By comparing the off-axis compressive and tensile behaviors at an equal strain rate, the effect of different loading modes on the flow stress level, rate-dependence and nonlinearity of the off-axis inelastic deformation is elucidated. The experimental results indicate that the compressive flow stress levels for relatively larger off-axis angles of $30^{\circ}$, $45^{\circ}$ and $90^{\circ}$ are about 50 percent larger than in tension for the same fiber orientations, respectively. The nonlinear deformations under off-axis tensile and compressive loading conditions exhibit significant strain-rate dependence. Similar features are observed in the fiber-orientation dependence of the off-axis flow stress levels under tension and compression and in the off-axis flow stress differential in tension and compression, regardless of the strain rate. A phenomenological theory of viscoplasticity is then developed which can describe the tension-compression asymmetry as well as the rate dependence, nonlinearity and fiber orientation dependence of the off-axis tensile and compressive behaviors of unidirectional composites in a unified manner. It is demonstrated by comparing with experimental results that the proposed viscoplastic constitutive model can be applied with reasonable accuracy to predict the different, nonlinear and rate-dependent behaviors of the unidirectional composite under off-axis tensile and compressive loading conditions.

어류 폐기물의 혐기성소화 처리(I): 반응조 형상 및 슬러지층 유동화가 소화조 Start-up에 미치는 영향 (Anaerobic Digestion Fish Offal(I): Effect of Reactor Configuration and Sludge Bed Fluidization on Start-up of Digester)

  • 정병곤;김병효
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제9권2호
    • /
    • pp.72-78
    • /
    • 2006
  • 혐기성 소화조의 단면적/용량 비를 일정하게 한 상태에서 반응조 직경만을 달리한 반응조에 유기물 부하율에 따른 소화조 운전효율을 평가하였다. $0.4\;kg\;COD/m^3{\cdot}d$의 낮은 유기물 부하율에서는 반응조 직경에 관계없이 높은 처리 효율을 나타내어 반응조 형상에 따른 처리효율 차이는 없었다. $6\;kg\;COD/m^3{\cdot}d$의 유기물 부하율에서는 반응조 직경에 따라 전혀 다른 처리효율이 관측되었다. 즉, 직경 6.4 cm 반응조에서는 휘발성산의 축적과 낮은 COD 제거효율이 관측되었으나 직경 3 cm 반응조에서는 높은 COD 제거효율이 관측되었고 휘발성산의 축적도 일어나지 않았다. 이러한 차이가 나타나게 된 이유는 직경이 작은 반응조의 경우에는 생성된 가스의 부상에 의해 슬러지층의 유동화가 원활하게 일어난데 반해 직경이 큰 반응조의 경우에는 그렇지 못한 것이라고 판단된다. $20\;kg\;COD/m^3{\cdot}d$의 높은 유기물 부하율에서는 반응조 직경과는 관계없이 극히 낮은 처리효율을 나타내어 높은 유기물 부하에서는 반응조 형상과 처리효율과는 관계가 없는 것으로 나타났다. 따라서 혐기성 소화조의 효율적인 start-up은 슬러지층의 유동화가 중요한 인자이며 동일 단면적/용량 비에서 반응조 직경이 작을수록 유리한 것으로 나타나 반응조 형상도 반응조 운전효율에 큰 영향을 미치는 것으로 나타났다.

  • PDF

Some aspects of load-rate sensitivity in visco-elastic microplane material model

  • Kozar, Ivica;Ozbolt, Josko
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.317-329
    • /
    • 2010
  • The paper describes localization of deformation in a bar under tensile loading. The material of the bar is considered as non-linear viscous elastic and the bar consists of two symmetric halves. It is assumed that the model represents behavior of the quasi-brittle viscous material under uniaxial tension with different loading rates. Besides that, the bar could represent uniaxial stress-strain law on a single plane of a microplane material model. Non-linear material property is taken from the microplane material model and it is coupled with the viscous damper producing non-linear Maxwell material model. Mathematically, the problem is described with a system of two partial differential equations with a non-linear algebraic constraint. In order to obtain solution, the system of differential algebraic equations is transformed into a system of three partial differential equations. System is subjected to loadings of different rate and it is shown that localization occurs only for high loading rates. Mathematically, in such a case two solutions are possible: one without the localization (unstable) and one with the localization (stable one). Furthermore, mass is added to the bar and in that case the problem is described with a system of four differential equations. It is demonstrated that for high enough loading rates, it is the added mass that dominates the response, in contrast to the viscous and elastic material parameters that dominated in the case without mass. This is demonstrated by several numerical examples.

황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거 (High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur)

  • 김대영;문진영;백진욱;황용우
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

염산 딜티아젬의 방출을 제어하기 위한 삼중 폴리머 매트릭스 시스템 (A Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drug with High Drug Loading : Diltiazem Hydrochloride)

  • 김현조;레자 파시히
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권1호
    • /
    • pp.19-25
    • /
    • 2001
  • The purpose of this study was to use a ternary polymeric matrix system for high drug loading of a highly soluble drug for controlled release delivery. The controlled drug delivery of diltiazem HCl (solubility > 50% in water at $25^{\circ}C$) with high loading dose (the final loading dose of drug was 34%) from a ternary polymeric matrix (gelatin, pectin, HPMC) was successfully accomplished. This simple monolithic system with 240 mg drug loading provided near zero-order release over a 24 hour-period by which time the system was completely dissolved. The release kinetics of diltiazem HCl tablet with high loading dose from the designed ternary polymeric system was dependent on the ratios of HPMC : pectin binary mixture. The release rate increased as pectin : HPMC ratio were increased. Swelling behavior of the ternary system and the ionic interaction of formulation components with cationic diltiazem molecule appear to control drug diffusion and the release kinetics. Comparable release profiles between commercial product and the designed system were obtained. The binding study between gelatin with diltiazem HCl showed the presence of two binding sites for drug interaction with subsequent controlled diffusion upon swelling. This designed delivery system is easy to manufacture and drug release behavior is highly reproducible and offers advantages over the existing commercial product.

  • PDF

Determination of spalling strength of rock by incident waveform

  • Tao, Ming;Zhao, Huatao;Li, Xibing;Ma, Jialu;Du, Kun;Xie, Xiaofeng
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.1-8
    • /
    • 2017
  • An experimental technique for determining the spalling strength of rock-like materials under a high strain rate is developed. It is observed that the spalling strength of a specimen can be determined by only knowing the wavelength, loading peak value and length of the first spallation of an incident wave under a specific loading waveform. Using this method in combination with a split-Hopkinson pressure bar (SHPB) and other experimental devices, the spalling strength of granite specimens under a high strain rate is tested. Comparisons with other experimental results show that the new measuring method can accurately calculate the dynamic tensile strength of rock materials under a high strain rate.

RTS test study and numerical simulation of mechanical properties of HDR bearings

  • Peng, Tianbo;Wu, Yicheng
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.299-307
    • /
    • 2017
  • High Damping Rubber bearings (HDR bearings) have been used in the seismic design of bridge structures widely in China. In earthquakes, structural natural periods will be extended, seismic energy will be dissipated by this kind of bearing. Previously, cyclic loading method was used mainly for test studies on mechanical properties of HDR bearings, which cannot simulate real seismic responses. In this paper, Real-Time Substructure (RTS) test study on mechanical properties of HDR bearings was conducted and it was found that the loading rate effect was not negligible. Then the influence of peak acceleration of ground motion was studied. At last test results were compared with a numerical simulation in the OpenSees software framework with the Kikuchi model. It is found that the Kikuchi model can simulate real mechanical properties of HDR bearings in earthquakes accurately.