• Title/Summary/Keyword: high pressure range

Search Result 1,347, Processing Time 0.028 seconds

Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

A Study on the Improvement of Optimal Load Range for Sliding Pressure Operation of coal-fired Power Plant (석탄화력 발전소 최적 변압운전 부하 범위 개선에 대한 연구)

  • Lee, Sang-Hun;Wang, Min-Seok;Wee, Sang-Bong;Son, Yung-Deug
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.675-680
    • /
    • 2019
  • The coal-fired power plant is operated by a combined operation method, which is operated by sliding pressure operation under low load and by fixed pressure operation under high load for improved efficiency. The combined operation is divided into two and three valve open modes. Each plant is operated by selecting the turbine control valve mode in accordance with the manufacturer's recommendation, but is not really operating at the optimal sliding pressure operation according to load range, also Load range of each plant is configured differently. The internal efficiency of the high-pressure turbines is reduced due to loss of the turbine valves and the plant efficiency is reduced. To solve these problems, In this paper, the optimum load range is selected through the analysis method of thermal performance by each load in order to improve the optimum variable pressure operation load range by turbine control valve mode.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

Visualization of Supersonic Projectile Flow in a Ballistic Range (Ballistic Range를 이용한 초음속 Projectile유동의 가시화)

  • Kang, Hyun-Goo;Shin, Choon-Sik;Choi, Jong-Youn;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.263-266
    • /
    • 2007
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass and piston mass are varied to obtain various projectile velocities. The flow field is visualized to see flow around projectile.

  • PDF

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.

A Study on Microscopic Spray Characteristics of Free Spray of Diesel with Ultra High Pressure (극초고압 디젤 자유분무의 미시적 분무특성에 관한 연구)

  • Jeong, Dae-Yong;Lee, Jong-Tai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.7-12
    • /
    • 2005
  • In order to analyze the microscopic spray characteristics of free spray in ultra high pressure region, the droplets size and velocity of free spray injected under atmosphere condition were measured by PDPA. As injection pressure became ultra high pressure, the droplets size was decreased continuously due to the increase of mutual reaction between droplets and air. But the decreasing rate became moderate. The velocity was increased until 250 MPa, and then decreased over that of injection pressure. It was seemed that the droplet size was similar in range of $280\~350\;MPa$, but increased in 414 MPa, even though injection pressure was increased. The microscopic spray characteristics of free spray got worse in 414 MPa.

An Experimental Study on Convective Boiling of R-22 and R-410A in Horizontal Smooth and Micro-fin Tubes

  • Kim, Yongchan;Seo, Kook-Jeong;Lee, Kyu-Jung;Park, Youn cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1156-1164
    • /
    • 2001
  • Evaporation heat transfer coefficients and pressure drops were measured for smooth and micro-fin tubes with R-22 and R-410A. Heat transfer measurements were performed for 3.0m long horizontal tubes with nominal outside diameters of 9.52 and 7.0mm over an evaporating temperature range of -15 to 5$\^{C}$, a mass flux range of 68 to 211kg/㎡s, and a heat flux range of 5 to 15kW/㎡. It was observed that the heat transfer coefficient increased with mass flux. Evaporation heat transfer coefficients of R-22 and R-410A increased as the evaporating temperature dropped at a lower heat flux. Generally, R-420A showed the higher heat transfer coefficients than R-22 in the range of low mass flux, high heat flux and high evaporating temperature. Pressure drop increased with a decrease of evaporating temperature and a rise of mass flux. Pressure drop of R-22 was higher than that of R-410A at the same mass flux.

  • PDF

A Study on the Development of a New Micro Positive Displacement Hydraulic Turbine (마이크로 용적형 수차의 개발에 관한 연구)

  • Lee, Young-Ho;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.284-290
    • /
    • 2006
  • For the case of high head and critical low flow rate range of micro hydropower resources, it requires very low specific speed turbines which are lower than conventional impulse turbine's specific speed. In order to satisfy the request for very low specific speed turbine with high efficiency, a new positive displacement turbine is developed. The performance characteristics of the new turbine is tested and compared with a conventional impulse turbine, which is used for automatic water faucet system. The purpose of present study is to develop an high performance turbine that can be used to extract micro hydropower potential of a water supply system. The test results show that the positive displacement turbine is much more efficient than the conventional turbine and it can sustain high efficiency under the wide range of operating conditions. The pressure pulsations at the inlet and outlet of the positive displacement turbine can be considerably minimized by using simple pressure damper.

지르칼로이-4의 고온 수증기 산화에서 압력효과

  • 박광헌;김광표;황주호
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.5-5
    • /
    • 2000
  • In the severe accident case like LOCA, Zircaloy(Zry) claddings are oxidized not only in high temperature but also in high pressures. It is a concem whether the safety of high bum up fuels can be maintained during severe accident. The effects of steam pressure on Zry-4 oxidation, and the effect of prc-existing oxide layer on the cladding in the high temperature-high pressure oxidation of Ziy-4 were investigated. The experimental temperature range was $700-900^{\circ}C$, and the pressures were between 0.1 and l5.0MPa. Partial pressure of steam tumed out to be the important one rather than total gas pressure. The higher the steam pressure was applied, the thicker the oxide became. nle effect of st,earn pressure on the oxidation of claddings with preexisting oxide was about 40-60% less effective than that of pickled cladding. Aocelerated oxidation in highpressure slean1 seems to be originated from the formation of microcracks produced during the transformation of tetragonal zirconia to monoclinic phase. Steam pressure seems to affect the stability of tetragonal phase.

  • PDF

Fabrication of Ceramic Thin Film Type Pressure Sensors for High-Temperature Applications and Their Characteristics (고온용 세라믹 박막형 압력센서의 제작과 그 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.790-794
    • /
    • 2003
  • This paper describes the fabrication and characteristics of ceramic thin film type pressure sensors based on Ta-N strain gauges for high temperature applications. Ta-N thin-film strain gauges are deposited onto a thermally oxidized Si diaphragm by RF sputtering in an argon-nitrogen atmos[here($N_2$ gas ratio: 8%, annealing condition: 90$0^{\circ}C$, 1 hr.), patterned on a wheatstone bridge configuration, and used as pressure sensing elements with a high stability and a high gauge factor. The sensitivity is 1.097 ~ 1.21 mV/Vㆍkgf/$\textrm{cm}^2$ in the temperature range of 25 ~ 200 $^{\circ}C$ and the maximum non-linearity resistance), non-linearity than existing Si piezoresistive pressure sensors. The fabricated ceramic thin-film type pressure sensor is expected to be usefully applied as pressure and load sensors that os operable under high-temperature.