• Title/Summary/Keyword: high gradient magnetic separation

Search Result 54, Processing Time 0.024 seconds

Magnetic Force Control Technique for Recycling and Environmental Preservation

  • Nishijima, Shigheiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.1-4
    • /
    • 2012
  • The applicability of the two types of magnetic separation system, high gradient magnetic separation (HGMS) and Magneto Archimedes method were studied considering the magnetic susceptibility of targeted substances. It was noted that the combination of the two methods can control the almost all the substances, paramagnetic and diamagnetic in addition to ferromagnetic substances. The principle of the methods was given and the conceput of the magnet force control technology is discussed. The practical applications of the technique were introduced together with the new application of HGMS.

Removal of iron scale from feed-water in thermal power plant by magnetic separation - Introduction to chemical cleaning line -

  • Yamamoto, Junya;Mori, Tatsuya;Hiramatsu, Mami;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijim, Sigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.6-10
    • /
    • 2018
  • Removal of iron oxide scale from feed-water in thermal power plant can improve power generation efficiency. We have proposed a novel scale removal system utilizing High Gradient Magnetic Separation (HGMS). This system can be applied to high temperature and pressure area. We have conducted the lab-scale model experiments using ${\varphi}50mm$ filters and it demonstrated high removal efficiency in HGMS, but scale-up of the system is required toward practical use. In this study, we conducted a large scale mock-up HGMS experiment. We used the superconducting solenoidal magnet with ${\varphi}400mm$ bore and demonstrated that our HGMS system can achieve sufficient scale removal capacity that is required to introduce into both off-line and on-line system.

Removal of sulfur element from high-sulfur coal by superconducting HGMS technology

  • Han, Shuai-shuai;Li, Su-qin;Yang, Rui-ming;Yang, Chang-qiao;Xing, Yi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.26-30
    • /
    • 2019
  • Coal is the most abundant fossil fuel on Earth and is used in a wide range of applications. The direct combustion of high-sulfur coal produces a large amount of sulfur dioxide, which is a toxic and corrosive gas. A new superconducting high gradient magnetic separation (HGMS) technology was studied to remove sulfur from high sulfur coal. The magnetic separation concentrate was obtained under the optimum parameters, such as a particle size of -200 mesh, a magnetic field strength of 2.0 T, a slurry concentration of 15 g/L, and a slurry flow rate of 600 ml/min. The removal rate of sulfur is up to 59.9%. The method uses a magnetic field to remove sulfur-containing magnetic material from a pulverized coal solution. It is simple process with, high efficiency, and is a new way.

Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

  • Kwon, Hee-won;Kim, JeongJin;Ha, Dong-Woo;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

Magnetic beads separation using a multi-layered microfluidic channel (다층구조의 미세유체채널을 이용한 자성입자 분리)

  • Lee, Hye-Lyn;Song, Suk-Heung;Jung, Hyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1685-1686
    • /
    • 2008
  • This paper presents the design and experiment results of a multi-layered microsystem for magnetic bead applications. The magneto-microfluidic device is designed for capable of separating magnetic beads. In the presence of the magnetic field, magnetic beads are attracted and moved to high gradient magnetic fields. A multi-layered microfluidic channel consists of top and bottom layers in order to separate magnetic beads in the vertical direction. Our channel is easily integrated magnetic cell sorter, especially on-chip microelectromagnet or permanent magnet device. Fast separation of magnetic beads in top and bottom channels can be used in high throughput screening to monitor the efficiency of blood and drug compounds.

  • PDF

Application and Type of Magnetic Separator (자력선별장비의 유형과 활용)

  • Lee, Sang-hun;Yang, Injae;Choi, Seungjin;Park, Jayhyun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.11-22
    • /
    • 2018
  • Magnetic separators has been used in the mining and the recycling fields in general, and is still applied in wide variety of fields. It is classified into the equipments for separating coarse ferrous scrap from non-ferrous materials and the equipments for concentrating fine ferromagnetic particles below 3mm. Magnetic separation equipments for concentrating fine materials also falls into two categories of low intensity and high intensity magnetic separators. The former is used for ferromagnetic materials but also paramagnetic materials of high magnetic susceptibility, and the latter for paramagnetic materials of lower magnetic susceptibility. Both low and high intensity magnetic separators could be utilized either dry and wet. Recently, the High gradient magnetic separators(HGMS) used in the range of less than 0.7 tesla has been gradually replaced by the magnetic separator made of rare earth permanent magnets commercialized in the 1980s. In addition, the expansion of nanotechnology in terms of synthetic magnetic materials in the environmental and biological fields is expected to contribute positively to the development of magnetic separation technology.

HTS high gradient magnetic separator prototype

  • Diev, D.N.;Lepehin, V.M.;Makarenko, M.N.;Polyakov, A.V.;Shcherbakov, V.I.;Shutova, D.I.;Surin, M.I.;Tagunov, E. Ya.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.1-5
    • /
    • 2018
  • A high gradient magnetic (HGM) separator prototype with the $2^{nd}$ generation high temperature superconducting (2G HTS) magnetic system operated in sub-cooled nitrogen is presently under development at NRC "Kurchatov Institute" (Moscow, Russia). The main goal of the project is an attempt to shift away from the complicated liquid helium cryostats towards simple cryocooler-based nitrogen cryogenics as much more convenient for HGM separators industrial applications. Using of commercial HTS tapes allows to get a sufficient level of magnetic fields and extraction forces with low energy consumption. The expected operational parameters of the device are 1.2-1.5 T in the empty operational gap and up to 3 T on the ferromagnetic filters. In this paper we briefly describe the design of the HTS rotary separator prototype with the horizontally oriented rotor axis and propose different types of ferromagnetic filters intended for weakly magnetic ores enrichment.

Superconducting magnetic separation of ground steel slag powder for recovery of resources

  • Kwon, H.W.;Kim, J.J.;Ha, D.W.;Choi, J.H.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.1
    • /
    • pp.22-25
    • /
    • 2017
  • Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.