DOI QR코드

DOI QR Code

HTS high gradient magnetic separator prototype

  • Diev, D.N. (National Research Centre "Kurchatov Institute", Moscow, Russian Federation) ;
  • Lepehin, V.M. (National Research Centre "Kurchatov Institute", Moscow, Russian Federation) ;
  • Makarenko, M.N. (National Research Centre "Kurchatov Institute", Moscow, Russian Federation) ;
  • Polyakov, A.V. (National Research Centre "Kurchatov Institute", Moscow, Russian Federation) ;
  • Shcherbakov, V.I. (National Research Centre "Kurchatov Institute", Moscow, Russian Federation) ;
  • Shutova, D.I. (National Research Centre "Kurchatov Institute", Moscow, Russian Federation) ;
  • Surin, M.I. (National Research Centre "Kurchatov Institute", Moscow, Russian Federation) ;
  • Tagunov, E. Ya. (Magnetit Ltd)
  • Received : 2018.11.16
  • Accepted : 2018.12.12
  • Published : 2018.12.31

Abstract

A high gradient magnetic (HGM) separator prototype with the $2^{nd}$ generation high temperature superconducting (2G HTS) magnetic system operated in sub-cooled nitrogen is presently under development at NRC "Kurchatov Institute" (Moscow, Russia). The main goal of the project is an attempt to shift away from the complicated liquid helium cryostats towards simple cryocooler-based nitrogen cryogenics as much more convenient for HGM separators industrial applications. Using of commercial HTS tapes allows to get a sufficient level of magnetic fields and extraction forces with low energy consumption. The expected operational parameters of the device are 1.2-1.5 T in the empty operational gap and up to 3 T on the ferromagnetic filters. In this paper we briefly describe the design of the HTS rotary separator prototype with the horizontally oriented rotor axis and propose different types of ferromagnetic filters intended for weakly magnetic ores enrichment.

Keywords

CJJOCB_2018_v20n4_1_f0001.png 이미지

Fig. 1. The design of the HTS HGM separator with a vertically rotating wheel.

CJJOCB_2018_v20n4_1_f0002.png 이미지

Fig. 2. The photos of the finished ReBCO coils and the parts of the cryostat under development.

CJJOCB_2018_v20n4_1_f0003.png 이미지

Fig. 3. Filter № 1 “plates with ledges” (the photo, the layout, and the magnetic flux density distribution in the 1.35 T background magnetic field).

CJJOCB_2018_v20n4_1_f0004.png 이미지

Fig. 4. Filter № 2 “rods” (the photo, the layout, and the magnetic flux density distribution in the 1.35 T background magnetic field).

CJJOCB_2018_v20n4_1_f0005.png 이미지

Fig. 5. Filter № 3 “angular plates” (the photo, the layout, and the magnetic flux density distribution in the 1.35 T background magnetic field).

CJJOCB_2018_v20n4_1_f0006.png 이미지

Fig. 6. Filter № 4 “plastic rods with a discrete ferromagnetic coating” (the photo, the layout, and the magnetic flux density distribution in the 1.35 T background magnetic field).

CJJOCB_2018_v20n4_1_f0007.png 이미지

Fig. 7. The changing of the magnetic extraction force parameter γ = B.grad B on the surface of a plastic rod covered with ferromagnetic particles (filter № 4) in the 1.5 T background magnetic field.

TABLE I DESIGN SPECIFICATIONS OF THE REBCO MAGNETIC SYSTEM.

CJJOCB_2018_v20n4_1_t0001.png 이미지

TABLE II THE PROPERTIES OF THE MODEL HGM FILTERS.

CJJOCB_2018_v20n4_1_t0002.png 이미지

References

  1. S. He, C. Yang, S. Li and C. Zhang, "Enrichment of valuable elements from vanadium slag using superconducting HGMS technology," Prog. Supercond. Cryog., vol. 19, No 1, pp. 17-21, 2017. https://doi.org/10.9714/psac.2017.19.1.017
  2. J. Kopp, "Superconducting magnetic separators," Magn. and electrical separation, vol. 3, pp. 17-32, 1991. https://doi.org/10.1155/1991/73078
  3. Z. Zian, et all, "Recent development of high gradient superconducting magnetic separator for kaolin in China," Prog. Supercond. Cryog., vol. 19, No 1, pp. 5-8, 2017. https://doi.org/10.9714/psac.2017.19.1.005
  4. Y. Li, H. Chen, J. Wang, F. Xu and W. Zhang, "Research on red mud treatment by a circulating superconducting magnetic separator," Environment. Tech., vol. 35, No 10, pp. 1243-1249, 2014. https://doi.org/10.1080/09593330.2013.865763
  5. J. B. Song, K. L. Kim, D. Yang, Y. G. Kim, J. Lee, M. C. Ahn, and H. Lee, "High-Tc superconducting high gradient magnetic separator using solid nitrogen cooling system for purification of CMP wastewater," IEEE Trans. on Appl. Supercond., vol. 23, No 3, pp. 3700505, 2013. https://doi.org/10.1109/TASC.2013.2255950
  6. Y. G. Kim, J. B. Song, D. G. Yang, W. J. Kim, S. H. Kim, and H. Lee, "Purification of chemical mechanical polishing wastewater via superconducting high gradient magnetic separation system with optimal coagulation process," IEEE Trans. on Appl. Supercond., vol. 25, No 3, pp. 3700205, 2015.
  7. H. Kumakura, T. Ohara, H. Kitaguchi, K. Togano, H. Wada, H. Mukai, K. Ohmatsu, and H. Takei, "Conduction cooled $Bi_2Sr_2Ca_2Cu_3O_x$ (Bi-2223) magnet for magnetic separation," Physica C, vol. 350, pp. 76-82, 2001. https://doi.org/10.1016/S0921-4534(00)01569-0
  8. D. N. Diev, V. M. Lepehin, M. N. Makarenko, A. V. Polyakov, V. I. Shcherbakov, D. I. Shutova and M. I. Surin, "REBCO split coil magnet for high gradient magnetic separation", Proc. 27th ICEC & ICMC, Oxford, England, 3-7th September 2018, submitted for publication.
  9. J. Svoboda, "Magnetic techniques for the treatment of materials," Kliwer academic publishers, 2004.
  10. https://www.ansys.com.