• Title/Summary/Keyword: high frequency induction

Search Result 672, Processing Time 0.032 seconds

Core Loss Analysis of Non-oriented Electrical Steel Under Magnetic Induction Including Higher Harmonics

  • Cho, Chuhyun;Son, Derac;Cho, Youk
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.66-69
    • /
    • 2001
  • The actual magnetic induction waveform of cores in electrical machines is not sinusoidal i.e. higher harmonics are always included. Thus the core loss in actual electrical machines is different from the core loss which is measured by the standard method, because the waveform of magnetic induction should be sinusoidal in the standard testing method. Core loss analysis under higher harmonic induction is always important in electric machine design. In this works we measured the core loss when a hysteresis loop has only one period of an ac minor loop of higher harmonic frequency, depending on the position of the ac minor loop of relative to the fundamental harmonic frequency. From this experiment, the core loss P(B/sub 0/f/sub 0/, B/sub h/, nf/sub 0/)) under a higher harmonic magnetic induction B/sub h/ could be expressed by the linear combination the core loss at fundamental harmonic frequency P/sub c/(B/sub 0/, f/sub 0/), the core loss of ac minor loop at zero induction region of the major hysteresis loop P/sub cL/ (B/sub h/, nf/sub 0/), and the core loss of an ac minor loop in the high induction region of the major hysteresis loop P/sub cH/ (B/sub h/, nf/sub 0/) i.e., P/sub c/, (B/sub 0/, f/sub 0/, B/sub h/, nf/sub 0/)=P/sub c/ (B/sub 0/, f/sub 0/,)+(n-1)[k₁(B/sub 0/) P/sub cL/ (B/sub h/, nf/sub 0/)+(1-k₁(B/sub 0/)) P/sub cH/ (B/sub h/, nf/sub 0/)]. This will be useful formula for electrical machine designers and one of effective methods to predict core loss including higher harmonic induction.

  • PDF

The Power Supply for High Frequency Induction Heating by using the Current Resonance (전류공진을 이용한 고주파 유도가열용 전원장치)

  • Ra, B.H.;Lee, E.Y.;Song, D.H.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.263-266
    • /
    • 2002
  • In this paper, It is indicating that an issues of the conventional boost converter for high frequency induction heating. To improve those issues, it is proposed, simulated and analyzed that the current resonant circuit, simulated. As the result, we knew that the proposed circuit has a good point to improve the waveform of input current and to make high efficiency. On the other side, in the inverter for the high current power supply, it is proposed that the high frequency inverter of the half bridge topology, be done the circuit analysis to extract the optimal circuit parameter. It is making sure of the soft switching operating by the inductor to reverse parallel connected on the inverter main switch, decreasing the surge voltage when the switch is turn-off by compulsion, and repressing the switch current and bringing the high current amplitude operation by the multi resonance.

  • PDF

Investigation of Weldline Strength with Various Heating Conditions (국부 금형가열에 조건에 따른 사출성형품 웰드라인의 강도 고찰)

  • Park, Keun;Sohn, Dong-Hwi;Seo, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.105-112
    • /
    • 2010
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. The weldlines are unavoidable in the cases of presence of holes or inserts, multi-gated delivery systems, significant thickness change, etc. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

Process Design of the Hot Pipe Bending Process Using High Frequency Induction Heating (고주파 유도가열을 이용한 열간 파이프 벤딩 공정 설계)

  • Ryu, Gyeong-Hui;Lee, Dong-Ju;Kim, Dong-Jin;Kim, Byeong-Min;Kim, Gwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.110-121
    • /
    • 2001
  • During hot pipe bending using induction heating, the wall of bending outside is thinned by tensile stress. In design requirement, the reduction of wall thickness is not allowed to exceed 12.5%. So in this study, two methods of bending, one is loading of reverse moment and the other is loading of temperature gradient, have been investigated to design pipe bending process that satisfy design requirements. For this purpose, finite element analysis with a bending radius 2Do(outer diameter of pipe) has been performed to calculate proper reverse moment and temperature gradient to be applied. Induction heating process has been analyzed to estimate influence of heating process parameters on heating characteristic by finite difference method. Then pipe bending experiments have been performed for verification of finite element and finite difference analysis results. Experimental results are in good agreement with the results of simulations.

  • PDF

Tuning-free Anti-windup Strategy for High Performance Induction Machine Drives (고성능 유도전동기 구동을 위한 자동 튜닝 Anti-windup 기법)

  • Seok Jul-Ki;Lee Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • This paper presents a tuning-free conditional integration anti-windup strategy for induction machine with Proportional-Integral(PI) type speed controller. The on/off condition of integral action is determined by the frequency domain analysis of machine torque command without a prior knowledge of set-point changes. There are no tuning parameters to be selected by users for anti-windup scheme. In addition, the dynamic performance of the proposed scheme assures a desired tracking response curve with minimal oscillation and settling time even in the change of operating conditions. This algorithm is useful in many high performance induction machine applications not to allow the oscillation and overshoot of speed/torque responses. The main idea can be extended to general applications such as chemical processes and industrial robots.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

A Study of the Effects of Process Variables on Temperature and Magnetic-flux Distribution in Induction Heating of Steel Plate (강판의 유도가열에서 공정변수가 온도 및 자속분포에 미치는 영향에 관한 연구)

  • 배강열;이태환;양영수
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.526-533
    • /
    • 2001
  • Induction heating of float metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. In this study, the induction heating of a steel plate to simulate the line heating is investigated by means of the Finite Element Analysis of the magnetic field and temperature distribution. A numerical model is used to calculate temperature distribution within the steel plate during the induction heating with a specially designed inductor. The effects of materital properties depending on the temperature and magnetic field are taken into consideration in an iterative manner. The simulation results show good magnetic field with experimental data and provide good understanding of the process. Since the numerical model demonstrates to be suitable for analysis of induction heating process, the effects of air gap and frequency on magnetic-flux and power-density distribution are also investigated. It is revealed that these process parameters have an important roles on the electro-magnetic field and power-density distribution governing the temperature distribution of the plate.

  • PDF

Reheating of Semi-Solid Material Using Multi-Capacity Induction Heating System (다출력 유도 가열 시스템에 의한 반용융 소재의 재가열)

  • 정홍규
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.199-202
    • /
    • 1999
  • Many processing times for fabricating complex shaped parts by near net shape process such as thixoforming or semi-solid forming, are required due to the time for die design, induction heating and forming process. Therefore, for the thixoforming process, multi-capacity induction heating process is very important due to the reduction of the processing time and cost. It is indispensable to adopt a power-time heating pattern which manages to conciliate complete eutectic melting at the core with limited overheating at the periphery. The total reheating time is thus dependent on billet diameter; in inches$(pm20%)$. Typically, high frequency is used for the rapid reheating of the billet to the eutectic temperature range and low frequency for the remelting of the desired fraction of liquid and for the radial homogeneization of the liquid fraction. So in this study, the multi-capacity induction heating conditions of ALTHIX 86s alloy to reduce the processing time and cost would be proposed. The suitability of multi-capacity induction heating conditions would be verified through the comparison to Garat's data.

  • PDF

Multi-step Modulation Techniques in PWM Inverter for a Variable-Speed Induction Motor Driving (가변속 유도전동기의 구동을 위한 PWM인버터의 다단변조 기법)

  • 박충규;정헌상;김국진;정을기;손진근
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.6
    • /
    • pp.32-41
    • /
    • 1992
  • In this paper, an advanced Pulse Width Modulation Inverter strategy for driving a variable-speed induction motor is introduced. A switching pattern making use of the near-proportionality of voltage and frequency in AC machines operating with constant flux was computed. At low magnitudes and ow frequencies of the fundamental, many more harmonics are eliminated than at high magnitudes and frequencies. In order to keep the inverter switching frequency constant over the output frequency range, the chopping frequency is diminished as the frequency of the fundamental increases. Using these modulation strategy, the harmonics components of PWM inverter are efficiently eliminated.

  • PDF