• Title/Summary/Keyword: high flowable

Search Result 73, Processing Time 0.022 seconds

Durability Characteristics of Controlled Low Strength Material(Flowable Fill) with High Volume Fly Ash Content (다량의 플라이 애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구)

  • 원종필;신유길
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2000
  • The purpose of this study was to examine the durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content. Flowable fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The mix proportions used for flowable fill are selected to obtain low-strength materials in the 10 to 15kgf/$\textrm{cm}^2$ range. The optimized flowable fill was consisted of 60kg f/$\textrm{m}^3$ cement content, 280kgf/$\textrm{m}^3$ fly ash content, 1400kgf/$\textrm{m}^3$ sand content, and 320kgf/$\textrm{m}^3$ water content. Subsequently, durability tests including permeability, warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted. The results indicated that flowable fill has acceptable durability characteristics.

Durability Characteristics of Low Strength Fly ash-Cement Composites (저강도 플라이애시-시멘트 복합체의 내구특성)

  • 원종필;신유길;이용수;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.142-147
    • /
    • 2000
  • Durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content was examined. The mix proportions used for flowable fill are selected to obtain low-strength material in the 10 to 15kgf/㎥ range. The optimized flowable fill was consisted of 60kgf/㎥ cement content, 280kgf/㎥ fly ash content, 1400kgf/㎥sand content, and 320kgf/㎥water content. Subsequently, durability tests including permeability warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted The test results indicated that flowable fill has has acceptable durability characteristics.

  • PDF

Optimization of Flowable Fill with High Volume Fly Ash Conten (다량의 플라이애시를 사용한 고유동 충전재의 최적배합설계)

  • 원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.81-90
    • /
    • 1999
  • The purpose of this study is to examine the uses of fly ash asa type of construction material. This paper presents the results of research performed to identify optimum mix proportions for production of lowable fill with high volume fly ash content . The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The flowable fill with high volume fly ash content was investigated for strength and flowability characteristics. Tests were carried out on flowable fill designed to have 10 ~15kgf/$\textrm{cm}^2$ compressive strength at 28 days with fly ash contents of approximately 260kgf/㎥. Slump was held at 25$\pm$1cm for all mixtures produced to range from 5kgf/$\textrm{cm}^2$ to 14kgf/$\textrm{cm}^2$ compressive strengths at 28 days. To produce flowable fill with high volume fly ash , first the influential variables were identified in an experimental study based on factorial design. Among the proportioning variables investigated, cement ,fly ash, and sand contents were found to have statistically significant effect on strength and slump of flowable fill . Subsequently, response surface analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected influential variables based on material properties and cost. The optimized flowable fill were then technically evaluated. It is shown that flowable fill has acceptable compressive strength , slump flow, hardening time, and permeability.

  • PDF

A Fundamcntal Study on the Propertice of High Performance Concrete using High Flowable Portland Cement (고유동포틀랜드시멘트를 이용한 고성능콘크리트의 기초적 특성에 관한연구)

  • 홍성윤;김병권;박춘근;조동원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.45-49
    • /
    • 1995
  • The fundamental properties of High Performance Concrete(HPC) were studied using high flowable portland cement which was developed at the Sangyong Cement Ind. Co.,Ltd. The results obtained are as follows. (1)The slump of HPC using high flowable portland cement maintains for 120min. (2)Ultra high strength greater than 800kg/$\textrm{cm}^2$ can be designed without using silica fume and other additives. (3)The value of drying shrinkage and adiabatic temperature rise of HPC are less than those of concrete made with OPC.

  • PDF

Flowability of High Flowable Concrete with Fly Ash and Lime Powder (플라이 애시와 석회석 미분말을 혼용한 고유동 콘크리트의 유동 특성)

  • Cho Il-Ho;Sung Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.23-30
    • /
    • 2006
  • This study is performed to evaluate flowability of high flowable concrete using ordinary portland cement, crushed coarse aggregate, crushed sand, sea sand, fly ash, lime powder and superplasticizer. The slump flow and air content are increased with increasing the content of lime powder. But, the O-type funneling time and Box-type passing are decreased with increasing the content of lime powder. The slump flow, air content, O-type funneling time, Box-type passing and L-type filling of target compressive strength 21-27 MPa and 35-42 MPa at curing age 28 days are 47-50 cm and 56-60 cm, 4.2-5.5% and 4.0-5.7%, 8-12s and 5-10s, 4.3-5.0 cm and 3.4-5.0 cm, and excellent, respectively. These concrete can be used for high flowable concrete.

A STUDY ON PHYSICAL PROPERTIES OF FLOWABLE COMPOSITE RESINS (유동성 복합레진의 물리적 성질에 대한 연구)

  • Kim, Ji-Young;Jeong, Byung-Cho;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.423-429
    • /
    • 2002
  • Recently, the clinical uses of flowable composite resins have increased because of fast, convenient and excellent accessibility, but little has been reported about physical properties of flowable resins. The purpose of this study was to measure and compare the physical properties(compressive strength, relative flowability, relative radiopacity) of 4 contemporary flowable composite resins(Filtek flow, Tetric Flow, Revolution Palfique Estelite LV high flow). The results were as follows; 1. There were no significant differences between 4 flowable composite resins in compressive strength, but all were lower than that of traditional hybrid composite resin(p<0.001). 2. The relative flowability were increased in order of Palfique Estelite LV high flow, Revolution, Filtek flow, Tetric Flow and sealant(p<0.001), but there were no significant differences between Filtek flow and Tetric Flow. 3. There were significant differences between flowable composite resins in relative radiopacity and they showed similar or higher radiopacity than dentin(p<0.001), especially Tetric Flow and Filtek Flow showed higher radiopacity than enamel(p<0.001). This results suggested that the stress of application area have to be considered since flowable composite resins have lower compressive strength than hybrid composite, and the differences of flowability between these flowable composite resins can be considered when they are selected. All tested flowable composite resins showed optimal radiopacity to ISO's recommend.

  • PDF

Development of High Performance Concrete Tunnel Linnig with Large Dimension (대단면 터널용 고성능 콘크리트 라이닝의 개발)

  • Cha Hun;Lee Chang Hoon;Sohn Yu Shin;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.53-56
    • /
    • 2005
  • High flowable concrete was first developed in 1988 to achieve durable concrete structures. High flowable concrete can improve workability sharply reason why the concrete has properties of resistance to segregation, filling ability, passing ability without compacting. Therefore, as we apply a high flowable concrete to a large dimensional tunnel which constructed in special environment, we can get workability, strength and durability required. Tunnel lining concrete with a large dimension has to use necessarily fly ash and slag for the properties of high flowability and watertight. We can expect improvement of workability and durability, mitigation of hydration, reducing shrinkage, enhancement of watertight by using cementitious materials. This paper proposes investigations for establishing a mix-design method and high flowability-strength testing methods have been carried out from the viewpoint of making a standard concrete tunnel lining with large dimension a standard.

  • PDF

A Study of the Characteristics of the High-Flowable Concrete (고유동콘크리트의 특성에 관한 실험적 연구)

  • Jeon, Hyun-Kyu;Kim, Dae-Hoi;Lee, Jong-Chan;Ji, Suk-Won;Yoo, Taek-Dong;Seo, Chee-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • In this research, we used fly-ash and blast-furnace slag as substitute material of cement and fine aggregate, and we, through experiments, researched and analyzed the features of high-flowable concrete added high efficiency AE water reduction agent. The results are below. 1. Liquefaction generally presented high-slump flow value; on the other hand, partial segregation was observed in case of mixing proportion with 65 cm slump flow and above. This segregation was partially improved in accordance with mixing admixture. 2. Compressive strength according to mixing admixture and increasing mixing ratio of fly-ash were subject to be declined when it was initially cast-in, but its gap was improved when time was fully passed. 3. After mixing blast-furnace slag and fly-ash as substitute material, the result showed that the modulus of elasticity against freezing & melting was improved according to mixing blast-furnace slag and also increased in accordance with increasing pulverulent-body volume. 4. According to increasing the mixing volume of fly-ash, the durability factor was deteriorated because compressive strength became lower as well as air content was decreased when it was initially case-in. 5. The minimum air content to secure durability was 3.7%, for that reason, we had better secure admixture such as air entraining agent when cast-in high-flowable concrete.

Engineering Property of Polyprofilene Fiber Reinforced High Flowable Concrete (폴리프로필렌섬유 보람 고유동 콘크리트의 공학적 특성)

  • Noh, Kyung-Hee;Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.185-188
    • /
    • 2002
  • This study is performed to examine the engineering properties of polyprofilene fiber reinforced high flowable concrete. For the estimation of the flow ability and filling ability, the slump flow, box height difference and L-shape filling appearence are measured and compared. The test result shows that the slump flow and L-shape filling appearence is decreased with increase containing polyprofilene fiber and box height difference is increased with increase containing polyprofilene fiber. Also, compressive strength is decreased with increase containing polyprofilene fiber.

  • PDF

Mechanism Study of Flowable Oxide Process for Sur-100nm Shallow Trench Isolation

  • Kim, Dae-Kyoung;Jang, Hae-Gyu;Lee, Hun;In, Ki-Chul;Choi, Doo-Hwan;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.68-68
    • /
    • 2011
  • As feature size is smaller, new technology are needed in semiconductor factory such as gap-fill technology for sub 100nm, development of ALD equipment for Cu barrier/seed, oxide trench etcher technology for 25 nm and beyond, development of high throughput Cu CMP equipment for 30nm and development of poly etcher for 25 nm and so on. We are focus on gap-fill technology for sub-30nm. There are many problems, which are leaning, over-hang, void, micro-pore, delaminate, thickness limitation, squeeze-in, squeeze-out and thinning phenomenon in sub-30 nm gap fill. New gap-fill processes, which are viscous oxide-SOD (spin on dielectric), O3-TEOS, NF3 Based HDP and Flowable oxide have been attempting to overcome these problems. Some groups investigated SOD process. Because gap-fill performance of SOD is best and process parameter is simple. Nevertheless these advantages, SOD processes have some problems. First, material cost is high. Second, density of SOD is too low. Therefore annealing and curing process certainly necessary to get hard density film. On the other hand, film density by Flowable oxide process is higher than film density by SOD process. Therefore, we are focus on Flowable oxide. In this work, dielectric film were deposited by PECVD with TSA(Trisilylamine - N(SiH3)3) and NH3. To get flow-ability, the effect of plasma treatment was investigated as function of O2 plasma power. QMS (quadruple mass spectrometry) and FTIR was used to analysis mechanism. Gap-filling performance and flow ability was confirmed by various patterns.

  • PDF