• Title/Summary/Keyword: high dose-rate gamma ray

Search Result 63, Processing Time 0.025 seconds

A CCD Camera Lens Degradation Caused by High Dose-Rate Gamma Irradiation (고 선량율 감마선 조사에 따른 렌즈의 열화)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1450-1455
    • /
    • 2009
  • Assumed that an IPTV camera system is to be used as an ad-hoc sensor for the surveillance and diagnostics of safety-critical equipments installed in the in-containment building of the nuclear power plant, an major problem is the presence of high dose-rate gamma irradiation fields inside the one. In order to uses an IPTV camera in such intense gamma radiation environment of the in-containment building, the radiation-weakened devices including a CCD imaging sensor, FPGA, ASIC and microprocessors are to be properly shielded from high dose-rate gamma radiation using the high-density material, lead or tungsten. But the passive elements such as mirror, lens and window, which are placed in the optical path of the CCD imaging sensor, are exposed to a high dose-rate gamma ray source directly. So, the gamma-ray irradiation characteristics of the passive elements, is needed to test. A CCD camera lens, made of glass material, have been gamma irradiated at the dose rate of 4.2 kGy/h during an hour up to a total dose of 4 kGy. The radiation induced color-center in the glass lens is observed. The degradation performance of the gamma irradiated lens is explained using an color component analysis.

Monitoring Performance of Camera under the High Dose-rate Gamma Ray Environment (고선량율 감마선 환경하에서의 카메라 관측성능)

  • Cho, Jai-Wan;Jeong, Kyung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1172-1178
    • /
    • 2012
  • In this paper, the gamma ray irradiation test results of the CCD cameras are described. From the low dose-rate (2.11 Gy/h) to the high dose-rate (150 Gy/h) level, which is the same level when the hydrogen explosion was occurred in the 1~3 reactor unit of the Fukushima nuclear power plant, the monitoring performance of the cameras owing to the speckles are evaluated. The numbers of speckles, generated by gamma ray irradiation, in the image of cameras are calculated by image processing technique. And the legibility of the sensor indicator (dosimeter) owing to the numbers of the speckles is presented.

VLC Wireless Data Transmission of High Luminance LED Irradiated by the High Dose-Rate Gamma-Ray (고 선량 감마선 조사에 따른 고휘도 LED의 가시광 무선 데이터 전송)

  • Cho, Jai-Wan;Choi, Young-Soo;Hong, Seok-Boong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.996-1000
    • /
    • 2010
  • In order to apply VLC (visible light communication) in harsh environment of nuclear power plant in-containment building, the high luminance LEDs, which are key components of the VLC system, have been gamma irradiated at the dose rate of 4 kGy/h during 72 hours up to a total dose of 288 kGy. The radiation induced coloration effect in the high luminance LED bulb made of acryl or plastic material was observed. In the VLC wireless data transmission experiment using the high luminance LEDs irradiated by high dose rate gamma-ray, the radiation induced coloration effect of the high luminance LED bulb extended the communication distance compared to non-irradiated LEDs.

Analysis of Visible Light Communication Module Degraded by High Dose-Rate Gamma Irradiation using Thermal Infrared Image (적외선 열영상을 이용한 가시광 통신모듈의 고선량 감마선조사에 따른 열화 분석)

  • Cho, Jai-Wan;Hong, Seok-Boong;Koo, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1203-1209
    • /
    • 2011
  • In this paper, the degradation evaluation method of VLC (Visible Light Communication) wireless module after high dose rate gamma-ray irradiation using the thermal infrared camera is proposed. First, the heating characteristics of the active devices embedded in the VLC wireless module during the condition of normal operation is monitored by thermal infrared camera. By the image processing technique, the trends of the intensity of the heat emitted by the active devices are calculated and stored. The feature of the blob area including the area of the active devices in the thermal infrared image is extracted and stored. The feature used in this paper is the mean value of the gray levels in the blob area. The same VLC module has been gamma irradiated at the dose rate of about 4.0 kGy/h during 72 hours up to a total dose of 288 kGy. And then, the heating characteristics of the active devices embedded in the VLC wireless module after high dose gamma ray irradiation is observed by thermal infrared camera. The high dose gamma-ray induced degradation of the active devices embedded in the VLC module was evaluated by comparing the mean value of the blob area to the one of the same blob area of the VLC module before the gamma ray irradiation.

Measurements of low dose rates of gamma-rays using position-sensitive plastic scintillation optical fiber detector

  • Song, Siwon;Kim, Jinhong;Park, Jae Hyung;Kim, Seunghyeon;Lim, Taeseob;Kim, Jin Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3398-3402
    • /
    • 2022
  • We fabricated a 15 m long position-sensitive plastic scintillation optical fiber (PSOF) detector consisting of a PSOF, two photomultiplier tubes, four fast amplifiers, and a digitizer. A single PSOF was used as a sensing part to estimate the gamma-ray source position, and 137Cs, an uncollimated solid-disk-type radioactive isotope, was used as a gamma-ray emitter. To improve the sensitivity, accuracy, and measurement time of a PSOF detector compared to those of previous studies, the performance of the amplifier was optimized, and the digital signal processing (DSP) was newly designed in this study. Moreover, we could measure very low dose rates of gamma-rays with high sensitivity and accuracy in a very short time using our proposed PSOF detector. The results of this study indicate that it is possible to accurately and quickly locate the position of a very low dose rate gamma-ray source in a wide range of contaminated areas using the proposed position-sensitive PSOF detector.

Analysis of High Luminance LED Beam Degradation using Color CCD Image (칼라 CCD 영상을 이용한 고휘도 LED 전구의 빔 열화 분석)

  • Cho, Jai-Wan;Choi, Young-Soo;Lee, Jae-Chul;Koo, In-Soo;Hong, Seok-Boong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.586-591
    • /
    • 2010
  • VLC (Visible Light Communication) is a wireless communication method using light that is visible to the human eye. It has a major advantage that it causes no interference to RF-based devices. This makes wireless communication possible in RF hazardous areas such as nuclear facilities. In order to apply VLC communication in harsh environment of nuclear power plant, the high luminance LEDs, which are key components of the VLC communication, have been gamma-ray irradiated at the dose rate of 4kGy/h during 72 hours up to a total dose of 288 kGy. The radiation induced color-center was formed in the LED housing cap made of transparent plastic or acryl material. The beam degradations of high luminance LEDs by high dose-rate gammaray irradiation are analyzed using color CCD image processing technology.

Induction of Mutants by Irradiation of $\gamma$-Ray on In vitro Shoots of Persimmon (기내$\gamma$-선 처리에 의한 감(Diospyros kaki Thunb.) 돌연변이 유기)

  • 고갑천
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.143-148
    • /
    • 2000
  • This study was carried out to know the optimum dose of gamma-ray for the induction of mutation in vitro and the characteristics of the mutants induced by gamma-ray in persimmon (Diospyros kaki Thunb.). The LD50 (50% lethal dose) for in vitro shoots of the cultivar, Nishimurawase was between 1 krad and 2 krad and about 1 krad for the cultivar, Ichikikeijiro. As the dose of gamma-ray increased, the length of shoots decreased and necrosis of buds increased. For the cultivar, Nishmurawase, 37.5∼58.3% shoots rooted and the rooting rate and the number of roots per shoot was low in high gamma-ray. The irradiated young plants which were grown in the growth cabinet for 6 weeks were shorter in shoot length and had more branches than non-irradiated plants. The survival rate of irradiated plants grown in the green house for 3 months was 33%, while 77% for control plants.

  • PDF

Application of Commercial PIN Photodiodes to develope Gamma-Ray Dosimeters (감마선 선량계를 개발하기 위한 상용 PIN 포토 다이오드의 응용)

  • Jeong, Dong-Hwa;Kim, Sung-Duck
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.274-280
    • /
    • 2000
  • This paper deals with an experimental study to apply commercial semiconductors to measure radiation dose rate for gamma ray. Since the low cost, small size, high efficiency and ruggedness of silicon photodiodes make them attractive photodetectors, they coulde be effectively used in measuring any radiation such as gamma ray. Most PN photodiodes show that the reverse current increases when the light is increased. Therefore the depletion region of them have influence on the reverse current, so we choose silicon PIN photodiodes with large depletion region. In order to detect radiation dose rate and then, to apply in developing any gamma ray dosimeter, some examinations and experiments were performed to PIN photodiodes in this work. Two kinds of PIN photodiodes, such as NEC's PH302 and SIEMENS's BPW34, were tested in a Co-60 gamma irradiation facility with a semiconductor parameter analyzer. As a result, we found that such PIN photodiodes present good linearity in diode current characteristics with dose rate. Therefore silicon PIN photodiodes could be suitably used in designing gamma ray dosimeters.

  • PDF

Effects of Low Dose ${\gamma}$ Radiation on the Radiosensitivity of Soybean(Glycine max L.) Plant (저선량 ${\gamma}$선 조사가 대두 식물체의 방사선 감수성에 미치는 영향)

  • Kim, Jae-Sung;Chae, Sung-Ki;Back, Myung-Hwa;Kim, Dong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.324-327
    • /
    • 2000
  • Soybean (Glycine max L. cv. Hwangkeum) seeds were irradiated with the dose of $0{\sim}20$ Gy to investigate the effect of the low dose ${\gamma}-ray$ radiation on the early growth and resistance to subsequent high dose of radiation. Germination rate was not enhanced in the seeds irradiated with low dos ${\gamma}-ray$ but plant height and fresh weight increased in the low dose irradiation group. The optimal radiation dose for the growth increasing was 8 Gy in soybean plant. Growth inhibition of soybean plants by high dose radiation was noticeably reduced by pre-irradiation of low dose radiation, Resistance to subsequent high dose of radiation was effective in 8 Gy and 20 Gy irradiation group.

  • PDF