• Title/Summary/Keyword: high curing temperature

Search Result 504, Processing Time 0.029 seconds

Estimation of Compressive Strength of Concrete Incorporating Admixture (혼화재 치환 콘크리트의 압축강도 증진해석)

  • Joo Eun-Hee;Pei Chang-Chun;Han Min-Cheol;Sohn Myoung-Soo;Jeon Hyun-Gyu;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • This raper investigates the effect of curing temperature on strength development of concrete incorporating cement kiln dust(CKD) and blast furnace slag (BS) quantitatively. Estimation of compressive strength of concrete was conducted using equivalent age equation and rate constant model. An increasing curing temperature results in an increase in strength at early age, but with the elapse of age, strength development at high curing temperature decreases compared with that at low curing temperature. Especially, the use of 35 has a remarkable strength development at early age and even at later age, high strength is maintained due to accelerated pozzolanic activity resulting from high temperature. Whereas, at low curing temperature, the use of BS leads to a decrease in compressive strength. Accordingly, much attention should be paid to prevent strength loss at low temperature. Based on the strength development estimation using equivalent age equation, good agreements between measured strength and calculated strength are obtained.

  • PDF

Effect of Curing Conditions on the Strength of Fly-Ash Based Geopolymer (양생조건이 플라이애쉬 기반 지오폴리머 강도에 미치는 영향)

  • Cho, Young-Keun;Moon, Gyu-Don;La, Jung-Min;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Material properties of geopolymer, whose the reaction is very complicated, have been influenced by chemical compositions and particle size distributions of fly ash, concentrations and types of alkali-activators and curing conditions such as temperatures and time. In this research, experiments with several variables such as curing temperatures, preset prior to the high temperature curing and high temperatures have been conducted in order to evaluate to investigate effects on the compressive strengths of geopolymer caused by curing condition. Experiment results were evaluated with compressive strengths and micro-structures such as SEM and MIP of geopolymer pastes. As a result, as higher curing temperature or longer preset time were applied to the pastes, higher compressive strengths were observed. However, compressive strengths of geopolymer pastes declined due to increases in macropores (>50 nm) under high temperatures elapsed after 24 hours. In this sense, it can be considered that strengths and microstructures of geopolymers depends on curing temperature and time.

An Experimental Study on the Strength Development of High Strength Concrete in Various Curing Conditions at an Early-age (초기 양생조건에 따른 고강도 콘크리트의 강도발현에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Lee, Tea-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2017
  • This study is experimentally investigated the effects of various steam curing parameters on the early-age compressive strength development of high strength concrete (over 40 MPa) in the precast plant production. High strength concrete are used only ordinary portland cement (type I) and water-cement ratio selected 3cases (25%, 35% and 45%). Also, steam curing parameters are as followings ; (1) Preset period 2cases (3 hours and 6 hours) (2) Maximum curing temperature 3cases ($45^{\circ}C$, $55^{\circ}C$ and $65^{\circ}C$) (3) Maintenance time of curing temperature 3cases (4 hours, 6 hours and 8 hours) (4) Maximum rate of heating and cooling $15^{\circ}C$/hr. Initial setting time and adiabatic temperature rising ratio of these concrete according to water-cement ratio are tested before main tests and examined the compressive strength development for the steam curing parameters. Also compressive strength are compared with optimum steam curing condition and standard curing at test ages. As test results, the optimum steam curing conditions for high strength concrete(over 40 MPa) are as followings. (1) Preset period ; over initial setting time of concrete (2) Maximum curing temperature ; bellow $55^{\circ}C$ (3) Maintenance time of curing temperature ; bellow 6hours. Also strength development of steam curing concrete show in the reversed strength at 28 days. It is to propose an efficient steam curing condition for high strength concrete in the precast method.

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.

The Characteristics of the Strength Development and Chloride Attack Resistance on the Concrete using High Early Strength Cement by Steam Curing Temperature Condition (증기양생 온도조건에 따른 조강시멘트 콘크리트의 강도발현특성 및 내염특성)

  • Lee Woong Jong;Lee Won Am;Um Tae Sun;Lee Jong Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.599-602
    • /
    • 2005
  • In this research, the characteristics of the strength development and chloride attack resistance on the concrete using high early strength cement by steam curing temperature condition were studied. As a result, It is observed that the early strength(16hr) is increasing and the strength of 28 days is decreasing, according as the rising of the steam curing temperature without the kinds of base cement(OPC and high early strength cement). On the other hand, it is observed that the more the contents of the unit binder(base cement + GGBF) is abundant, the more the steam curing temperature can be reduced in case of the high early strength. Also, the chloride attack resistance is improved according as the amount of GGBF is increased with the kinds of base cement(OPC and high early strength cement).

  • PDF

황색종 잎담배 공동건조장의 환경개선

  • 신승구;백기현;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.160-165
    • /
    • 1998
  • The Joint curing barns for flue-cured tobacco is a favorite with the tobacco farmers in Korea. However, most of farmer utilizing the joint curing barns indicated many problems such as high temperature and noise in the working room and a dry of cured leaves in the storage room. A structure of Joint curing barns has been modified to meet the needs of tobacco farmers. Compared with the unimproved joint curing barns, the improved one showed that the noise of workshop decreased about 7.7~10.8db, the amount of $CO_2$ decreased 40~50ppm in a working room and 80~100ppm in a machine room. Ammonia gas decreased 0.29mg/㎥ and the temperature of a working room dropped about 2.1~3.5$^{\circ}C$. The amount of air flow in a working room increased 23.2% at a site being 2m away from the entrance and 30.8% at a center. The inner temperature of the improved storage room showed that maximum temperature dropped about 3$^{\circ}C$, minimum temperature was high about 2$^{\circ}C$. The highest relative humidity was low 6%, the lowest one increased high about 10% when compared with the unimproved joint curing barns.

  • PDF

Experimental Study of Strength Development in High Flow Concrete as following of Curing Temperature (초기 재령에서의 양생 온도 조건에 따른 고유동 콘크리트의 조기강도 발현 성상에 관한 실험적 연구)

  • 이도범;김효락;박지훈;최일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.19-22
    • /
    • 2003
  • This study is carried out (1) checking the development of compressive strength of high flowing concrete at early age, changing water-binder ratio, curing temperature, and type of aggregate, and (2) suggesting basic date that helping cost and schedule plan in future construction. As the result of this study, we find that high curing temperature is effective for the development of compressive strength of concrete at early age on the condition of each water-binder ratio, and after making the compressive prediction formula related to the curing temperature by maturity, the result of the formular is similar to the temperature-compressive strength-age measured data

  • PDF

Strength Properties of the Mortar According to the Curing Condition of the Modified Sulfur Mortar (개질유황 모르타르의 양생조건에 따른 모르타르의 강도특성)

  • Jung, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.332-333
    • /
    • 2013
  • This research utilizes the modified sulfur having the low melting point which 65℃ is tries to study the strength property of the mortar according to the cure method of the modified sulfur mortar. And we try to use as basic data for investigating the curing condition of the light panel optimum utilizing the modified sulfur. We experimented by five kinds; 20℃ water curing method and 20, 40, 60, 80(℃) air dry curing method. In 3 day curing, the compressive strength was improved caused by high curing temperature. But the compressive strength was degraded caused by enhanced temperature in 7day curing and 28day curing. Therefore, the curing temperature of the modified sulfur mortar is determined that it comes 20 time case curing and the water curing is the most recommendable.

  • PDF

Chemical Stability through CO2 Curing of Cement Paste Exposed to High Temperature (고온 환경에 노출된 시멘트 페이스트의 DCG 양생을 통한 화학적 안정화)

  • Kim, Min-Hyouck;Cho, Hyeon-Seo;Lee, Gun-Cheo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.73-74
    • /
    • 2019
  • In order to examine the chemical stabilization through DCG curing of cement paste exposed to high temperature environment, we produced a sample of 40% W/C cement paste and heated it for 180 minutes under the heating temperature of $800^{\circ}C$. The DCG curing time was 6, Three time conditions were divided into 12 and 18 hours. As a result of XRD analysis, Calcite ($CaCO_3$) was found in Theta 29.4, 40, and 46.5o. As the curing time increased, the peak of Calcite also increased, which is due to the increased reaction time with DCG. Therefore, Calcite produced through DCG curing seems to have stabilized chemically by filling the pores generated by heating.

  • PDF

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.