• 제목/요약/키워드: high corrosion resistance

검색결과 1,065건 처리시간 0.029초

5% 황산용액에서 배기밸브 보수 용접부의 부식 특성에 미치는 용접방법과 용접봉의 영향-1 (Effect of Welding method and Welding Material to Corrosion Property of Repair Weld Zone for Exhaust Valve in 5% H2SO4 Solution -1)

  • 김진경;조황래;이명훈;김윤해;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.744-752
    • /
    • 2007
  • Recently a fuel oil of the diesel engine in the ship is being changed with low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine like cylinder liner ring groove of piston crown, spindle and seat ring of exhaust valve are increased with using of heavy oil of low quality In particular the degree of wear and corrosion in between valve spindle and seat ring are more serious compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weld to the valve spindle and seat ring is a unique method to prolong the life of the exhaust valve in an economical point of view In this study. corrosion property of both weld metal zone and base metal was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 5% $H_2SO_4$ solution. in the case of being welded with some welding methods and welding materials to the exhaust valve specimen as the base metal. In all cases. the values of hardness of the weld metal zone were more high than that of the base metal. And their corrosion resistance were also superior to the base metal. The weld metal of A2F(AC SMAW: 2 pass welding with foreign electrode) showed a relatively good results to the corrosion resistance as well as the hardness compared to the ether welding methods and welding materials. Moreover it indicated that hardness of the weld metal by the domestic electrode was considerably high compared to that of the foreign electrode.

오스테나이트 합금의 용융염부식 및 고온산화에 미치는 Si 농도와 RE 첨가의 영향 (Effect of Si Content and RE Addition on Molten Salt Corrosion and High Temperature Oxidation of the Austenite Alloys)

  • 조수행;장준선;오승철;신영준;박성원
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.3-9
    • /
    • 2002
  • The corrosion behavior of alloys in a molten salt was investigated along with the oxidation characteristics in the air. The basic composition of alloys in the study was Fe-25Ni-7Cr with Si and RE(rare-earth metal) as additives. The corrosion rate of the alloys was low in a molten salt of LiCl while the rate was high in the mixed molten salt of LiCl and $Li_2O$. When Si is added to the base alloy of Fe-25Ni-7Cr, corrosion resistance was improved as the Si content is increased up to 3%, however, it was observed that the corrosion resistance was getting worse as the Si content is increased. The base alloy with 2.43% of Si and 0.9% of RE(KSA-65), showed higher corrosion rate compared to that of KSA-63 alloy with an equivalent amount of only Si. The corrosion resistance of KSA-65 was similar to that of the base alloy(KSA-60). The oxidation resistance of KSA-65 alloy was greatly increased even at $850^{\circ}C$ for a long term exposure.

Effects of Inhibitors on Corrosion Resistance of Steel in CaCl2 Solution Based on Response Surface Analysis

  • Park, Tae-Jun;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • 제20권3호
    • /
    • pp.129-142
    • /
    • 2021
  • Effects of corrosion inhibitors (i.e., sodium nitrite, sodium hexametaphosphate, trimethylamine (TEA), sugar, and urea) on the corrosion resistance of carbon steel in CaCl2 solution were investigated. The test solution was designed with response surface methodology of design of experiments (DOE) in the range of 0 ~ 50 ppm for NaNO2, 0 ~ 200 ppm for (NaPO3)6, 0 ~ 2000 ppm for TEA, 0 ~ 3000 ppm for sugar, 0 ~ 200 ppm for urea with 3 wt% CaCl2. The corrosion potential and the corrosion rate were measured with potentiodynamic polarization tests and analyzed statistically to find main effects of inhibitor concentrations and interactions between them. As a result, hexametaphosphate was the most effective compound in reducing the corrosion rate. Sugar also reduced the corrosion rate significantly possibly because it covered the surface effectively with a high molecular weight. The inhibiting action of sugar was found to be enhanced by adding trimethylamine into the solution. Nevertheless, trimethylamine did not appear to be effective in inhibiting corrosion by itself. However, urea and sodium nitrite showed almost no inhibition on corrosion resistance of steel.

용사 코팅된 스틸바의 트라이볼로지적 특성의 형상학적 관찰 (Morphological Observation on Tribological Characteristic of Thermal Spray Coated Steel-Bar)

  • 이덕규;조희근
    • 대한기계학회논문집A
    • /
    • 제38권5호
    • /
    • pp.559-566
    • /
    • 2014
  • 제철공장의 소결대차 스틸바의 내열성, 내마모성, 내부식성 등의 성질을 향상시키기 위하여 용사코팅을 적용한 연구가 진행되었다. 약 $700^{\circ}C$의 고온환경에서 내열, 내마모, 부식 등에 노출되어 있는 스틸의 표면에 $Al_2O_3$, $Cr_2O_3$, WC 코팅을 적용하여 국부적으로 고온내마모성, 내식성, 내열성, 내열충격성 등을 향상시킴으로써 기존 제강공정에서 사용되는 스틸바의 수명을 향상시켰다. 스틸바에 적용한 금속용사 코팅층에 대하여 고온내마모시험, 열충격시험, 내부식시험을 수행하였다. 코팅층의 물리적, 화학적, 기계적 특성이 코팅이 안된 재료에 비해 매우 우수하였다.

0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제3보: 부식특성 (Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 3: Corrosion Characteristic)

  • 안석환;강흥주;서현수;남기우;이건찬
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.85-91
    • /
    • 2009
  • A stainless steel that contains aggressive negative ion was known to decrease the corrosion resistance. Stainless steel with super corrosion resistance was developed for improvement of corrosion resistance. Super duplex stainless steel is widely used under sever environment because of good mechanical properties and corrosion resistance. Also, Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. But duplex stainless steel is not stabilized compared to austenite stainless steel in corrosion resistance. In this study, corrosion characteristic were investigated to super duplex stainless steel with additive 0.2% nitrogen with $SiO_2$ thin films coated or no coated by sol-gel method in 3.5% NaCl. From test results, corrosion current density in the heat-treated specimen for ${\sigma}$ phase precipitation was higher than that of different heat-treated specimen. Also, $SiO_2$ colloidal-coated specimen had not occurred almost corrosion.

알루미늄 3003 산화피막 성장 거동에 의한 표면 절연 특성 관찰 (Surface Electrical Conductivity and Growth Behavior of Aluminum 3003 Oxide Film)

  • 박수빈;정찬영
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.487-494
    • /
    • 2022
  • Anodizing is a typical electrochemical surface treatment method that can improve the corrosion and insulating properties of aluminum alloys. The anodization process can obtain a dense structure. It can be used to artificially grow the thickness of an anodization film. Aluminum 3003 alloy used in this study is the most commonly used alloy for batteries due to its high strength and excellent formability as well as its weldability and corrosion resistance. Aluminum 3003 alloy was anodized at 0 ℃ with 0.3 M oxalic acid at 20 V, 40 V, or 60 V for 1 hour, 6 hours, or 12 hours. As a result of analyzing the composition of each specimen with an Energy Dispersive Spectrometer (EDS), aluminum was converted into an oxide film. The thickness of the formed anodization film increased when the applied voltage and anodization time increased. High corrosion potential values and low corrosion current density values were observed for the thickest oxide layer. The anodization film formed by anodization acted as a protective layer. The electrical resistance increased as the applied voltage and anodization time increased.

PEMFCB금속분리판 코팅 기술 개발 : I. 표면 및 부식 특성 평가 (Development of Surface Coating Technology fey Metallic Bipolar Plate in PEMFC : I. Study on Surface and Corrosion Properties)

  • 정경우;김세융;양유창;안승균;전유택;나상묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.348-351
    • /
    • 2006
  • Bipolar plate, which forms about 50% of the stack cost, is an important core part with polymer electrolyte membrane in PEMFC. Bipolar plates have been commonly fabricated from graphite meterial having high electrical conductivity and corrosion resistance. Lately, many researchers have concentrated their efforts on the development of metallic bipolar plate and stainless steel has been considered as a potential material for metallic bipolar plate because of its high strength, chemical stability, low gas permeability and applicability to mass production. However, it has been reported that its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions and an increase in contact resistance by the growth of passive film therefore, its corrosion resistance as well as contact resistance must be improved for bipolar plate application. In this work, several types of coating were applied to 316L and their electrical conductivity and corrosion resistance were evaluated In the simulated PEMFC environment. Application of coating gave rise to low interfacial contact resistances below $19m{\Omega}cm^2$ under the compress force of $150N/cm^2$. It also made the corrosion potential to shift in the posit ive direct ion by 0.3V or above and decreased the corrosion current from ca. $9{\mu}A/cm^2$ to ca. $0.5{\mu}A/cm^2$ in the mixed solution of $0.1N\;N_2SO_4$ and 2ppm HF A coat ing layer under potentiostatic control of 0.6V and $0.75V_{SCE}$ for 500 hours or longer showed some instabilities, however, no significant change in coat Ing layer were observed from Impedance data. In addition, the corrosion current maintained less than $1{\mu}A/cm^2$ for most of time for potentiostatic tests. It indicates that high electrical conductivity and corrosion resistance can be obtained by application of coatings in the present work.

  • PDF

Pure inorganic protective silica coating on stainless steel prepared at low heat treatment temperature

  • 황태진
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.6.2-6.2
    • /
    • 2010
  • Stainless steel is widely known to have superior corrosion properties. However, in some harsh conditions it still suffers various kinds of corrosions such as galvanic corrosion, pitting corrosion, intergranular corrosion, chloride stress corrosion cracking, and etc. For the corrosion protection of stainless steel, the ceramic coatings such as protective silica film can be used. The sol-gel coating technique for the silica film has been extensively studied especially because of the cost effectiveness. It has been proved that silica can improve the oxidation and the acidic corrosion resistance of metal surface in a wide range of temperatures due to its high heat and chemical resistance. However, in the sol-gel coating process there used to engage a heat treatment at an elevated temperature like $500^{\circ}C{\sim}600^{\circ}C$ where cracks in the silica film would be formed because of the thermal expansion mismatch with the metal. The cracks and pores of the film would deteriorate the corrosion resistance. When the heat treatment temperature is reduced while keeping the adhesion and the density of the film, it could possibly give the enhanced corrosion resistance. In this respect, inorganic protective silica film was tried on the surface of stainless steel using a sol-gel chemical route where silica nanoparticles, tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used. Silica nanoparticles with different sizes were mixed and then the film was deposited on the stainless steel substrate. It was intended by mixing the small and the large particles at the same time a sufficient consolidation of the film is possible because of the high surface activity of the small nanoparticles and a modest silica film is obtained with a low temperature heat treatment at as low as $200^{\circ}C$. The prepared film showed enhanced adhesion when compared with a silica film without nanoparticle addition. The films also showed improved protect ability against corrosion.

  • PDF

유도 결합 플라즈마-스퍼터 승화법을 이용한 고분자 전해질 연료전지 분리판용 CrN 박막의 내식성연구 (Anti-corrosion Properties of CrN Thin Films Deposited by Inductively Coupled Plasma Assisted Sputter Sublimation for PEMFC Bipolar Plates)

  • 유영군;주정훈
    • 한국표면공학회지
    • /
    • 제46권4호
    • /
    • pp.168-174
    • /
    • 2013
  • In this study, low-cost, high-speed deposition, excellent processability, high mechanical strength and electrical conductivity, chemical stability and corrosion resistance of stainless steel to meet the obsessive-compulsive (0.1 mm or less) were selected CrN thin film. new price reduction to sputter deposition causes - the possibility of sublimation source for inductively coupled plasma Cr rods were attempts by DC bias. 0.6 Pa Ar inductively coupled plasmas of 2.4 MHz, 500 W, keeping Cr Rod DC bias power 30 W (900 V, 0.02 A) is applied, $N_2$ flow rate of 0.5, 1.0, 1.5 sccm by varying the characteristics of were analyzed. $N_2$ flow rate increases, decreases and $Cr_2N$, CrN was found to increase. In addition to corrosion resistance and contact resistance, corrosion resistance, electrical conductivity was evaluated. corrosion current density than $N_2$ 0 sccm was sure to rise in all, $N_2$ 1 sccm at $4.390{\times}10^{-7}$ (at 0.6 V) $A{\cdot}cm^{-2}$, respectively. electrical conductivity process results when $N_2$ 1 sccm 28.8 $m{\Omega}/cm^2$ with the lowest value of the contact resistance was confirmed that came out. The OES (SQ-2000) and QMS (CPM-300) using a reactive deposition process to add $N_2$ to maintain a uniform deposition rate was confirmed that.

Study of Cresol-Novolac Epoxy Systems on Fusion Bonded Epoxy Coatings for Pipeline Protection

  • Chung, Chi Wook;Lee, Sang Sun;Chai, Soo Gyum;Lim, Jong Chan
    • Corrosion Science and Technology
    • /
    • 제2권4호
    • /
    • pp.202-206
    • /
    • 2003
  • Fusion Bonded Epoxy(FBE) systems have been widely used to protect pipelines for over 30 years. Numerous attempts have so far been made to improve the properties of FBE coatings such as chemical resistance, adhesion, water resistance, cathodic disbondment resistance, impact resistance, and flexibility to protect pipelines at a wet and a high temperature condition. But these attempts have not been successful in reducing some weakness, for instance, in pipeline operating at high temperature due to poor hot water resistance and cathodic protection. The purpose here is to build a basis for getting better corrosion resistance of FBE systems. Cresol-novolac epoxy coating systems were studied compared to bisphenol A type epoxy systems. After the immersion of the film in water at a high temperature for a long period, good adhesion to metal substrate and excellent cathodic disbond resistance were observed in the cresol-novolac epoxy resin systems. It is well known that the adhesion of organic coatings to metal substrate might be decreased due to the disruption of a chemical bond across the film and metal interface induced by water molecules. A high crosslinking density might decrease water permeability and improve cathodic disbonding protection in the coatings. Other factors are studied to understand anti-corrosion mechanism of Cresol-novolac epoxy coatings. In addition, the water absorption rate and the effect of cure temperature on the adhesion and cathodic disbonding resistance ofthe films were studied in different epoxy coatings and the effect of substrate was evaluated. The results of field application are proved that the Cresol-novolac epoxy coating system developed recently is one of the most suitable coatings for protection of pipelines.