• Title/Summary/Keyword: high $O_2$

Search Result 12,501, Processing Time 0.042 seconds

Preparation of Hard Coating Films with High Refractive Index from TiO2-SnO2 Nanoparticles (TiO2-SnO2 나노입자로 부터 고굴절 하드코팅 도막의 제조)

  • Ahn, Chi Yong;Kim, Nam Woo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.776-782
    • /
    • 2015
  • $TiO_2-SnO_2$ nanoparticles with an average diameter of 3~5 nm were synthesized by hydrolysis of titanium tetraisopropoxide (TTIP) and tin chloride to depress the photocatalytic activity of $TiO_2$ nanoparticles. Organic-inorganic hybrid coating solutions were prepared by reacting the $TiO_2-SnO_2$ nanoparticles with 3-glycidoxypropyl trimethoxysilane (GPTMS) by the sol-gel method. The hard coating films with high refractive index were obtained by curing thermally at $120^{\circ}C$ after spin-coating the coating solutions on the polycarbonate (PC) sheets. The coating films from $TiO_2-SnO_2$ nanoparticles showed an improved pencil hardness of 3H compared to 2H of the coating films from $TiO_2$ nanoparticles. Besides, the refractive index of the coating films from $TiO_2-SnO_2$ nanoparticles enhanced from 1.543 to 1.623 at 633 nm as the Sn/Ti molar ratio increased from 0 to 0.5.

Electrical characteristic of insulator in tunnel-harrier memory using high-k (High-k를 이용한 터널베리어 메모리의 절연막 특성 평가)

  • Oh, Se-Man;Jung, Myung-Ho;Park, Gun-Ho;Kim, Kwan-Su;Jo, Young-Hun;Jung, Jong-Wan;Jung, Hong-Bea;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.262-263
    • /
    • 2008
  • The Metal-Insulator-Silicon (MIS) capacitors with $SiO_2$ and high-k dielectric were investigated. The high-k dielectrics were obtained by atomic layer deposit (ALD) system. The electrical characteristics were investigated by measuring the current-voltage (I-V) characteristics. The conduction mechanisms were analyzed by using the Fowler-Nordheim (FN) plot and Direct Tunneling (DT) plot. As a result, the MIS capacitors with high-k dielectrics have lower leakage current densities than conventional tunnel-barrier with $SiO_2$ dielectrics.

  • PDF

Reliability Analysis of 4H-SiC CMOS Device for High Voltage Power IC Integration (고전압 Power IC 집적을 위한 4H-SiC CMOS 신뢰성 연구)

  • Kang, Yeon-Ju;Na, Jae-Yeop;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In this paper, we studied 4H-SiC CMOS that can be integrated with high-voltage SiC power devices. After designing the CMOS on a 4H-SiC substrate, we compared the electrical characteristics with the reliability of high temperature operation by TCAD simulation. In particular, it was confirmed that changing HfO2 as the gate dielectric for reliable operation at high temperatures improves the thermal properties compared to SiO2. By researching SiC CMOS devices, we can integrate high-power SiC power devices with SiC CMOS for excellent performance in terms of efficiency and cost of high-power systems.

Study on the Color of High Index Glass Containing $TiO_2$ ($TiO_2$ 함유 고굴절솔 유리의 착색에 관한 연구)

  • 김병훈
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.4
    • /
    • pp.203-207
    • /
    • 1980
  • The optical absorption of high index glasses of the system TiO2-BaO-B2O3 prepared from the raw materials for an optical waveguide glass has been measured in the near ultraviolet region. The amount of Ti3+ in the glass could be reduced to a level less than 5 ppm by melting a batch added with pure nitric acid, using a fused quartz crucible in an oxygen gas atmosphere. The ultra-pure glass of 10mm thick prepared in such a way did not show any appreciable color even for the one containing 30 mol% TiO2 and having refractive index nD of 1.84 and Abbe's number vD of 28.8. The wavelength of ultraviolet absorptin edge was longer for the glass of higher index and higher dispersdion. The melting of a TiO2 containing glass in a platinum crucible resulted in a coloration of the glass due to the dissolved plutinum from the crucible, which was more intense for the one containing larger amount of TiO2.

  • PDF

Hardening and Hydroxyapatite Formation of Bioactive Cement Prepared from Calcium Phosphosilicate Glass

  • Kim, Cheol-Young;Park, Sang-Jong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.131-136
    • /
    • 1995
  • It has been reported that the biocement obtained by mixing $CaO-SiO_2-P_2O_5$ glass powders with ammonium phosphate solution has biocompatibility as will as high strength. The hardening mechanism and hydroxyapatite forming mechanism were discussed when $53.6%CaO_1,\; 38.1%SiO_2,\; 7.7P_2O_6,\; 0.6%CaF_2$(mole %) glass powder was reacted with ammonium phosphate solution and reacted in tris-buffer solution, respectively. High strength hardened biocement was obtained for the specimen with $CaNH_4PO_4\;H_2O$ crystal when the glass powder was mixed with ammonium phosphate solution, and hydroxyapatite crystal was rapidly formed only in the sample with $CaNH_4PO_4\;H_2O$ crystal when it was reacted in tris-buffer solution.

  • PDF

Synthesis of $Y_2O-# : Eu$ Added the Group 1 or 2 Elements Using Complex-Polymerization and its Luminescent Properities (착제중합법에 의한 1, 2족 원소가 $Y_2O-# : Eu$ 형광체의 합성광 발광특성)

  • Park, Sang Mi;Kim, Chang Hae;Park, Joung Kyu;Park, Hee Dong;Jang, Ho G.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.236-241
    • /
    • 2001
  • Europium activated yttrium oxide ($Y_2O_3$ : Eu) is extensively applied to red phosphor for Flat Panel Display because of its high efficiency and the thermal and chemical stability. Flat Panel Display screen which have a high resolution and high efficiency needs to the phosphors of ideally small size spherical particle. In this study, we prepared a $Y_2O_3$ : Eu phosphor using polymeric precursor methods and investigated the codoping effect by introducing the group 1 or 2 elements to $Y_2O_3$ : Eu phosphor in view of improvement of luminance efficiency.

  • PDF

Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells (염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발)

  • Zhao, Xing Guan;Jin, En Mei;Gua, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.427-431
    • /
    • 2011
  • Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

CMP of BTO Thin Films using $TiO_2$ and $BaTiO_3$ Mixed Abrasive slurry ($BaTiO_3$$TiO_2$ 연마제 첨가를 통한 BTO박막의 CMP)

  • Seo, Yong-Jin;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.68-69
    • /
    • 2005
  • BTO ($BaTiO_3$) thin film is one of the high dielectric materials for high-density dynamic random access memories (DRAMs) due to its relatively high dielectric constant. It is generally known that BTO film is difficult to be etched by plasma etching, but high etch rate with good selectivity to pattern mask was required. The problem of sidewall angle also still remained to be solved in plasma etching of BTO thin film. In this study, we first examined the patterning possibility of BTO film by chemical mechanical polishing (CMP) process instead of plasma etching. The sputtered BTO film on TEOS film as a stopper layer was polished by CMP process with the self-developed $BaTiO_3$- and $TiO_2$-mixed abrasives slurries (MAS), respectively. The removal rate of BTO thin film using the$ BaTiO_3$-mixed abrasive slurry ($BaTiO_3$-MAS) was higher than that using the $TiO_2$-mixed abrasive slurry ($TiO_2$-MAS) in the same concentrations. The maximum removal rate of BTO thin film was 848 nm/min with an addition of $BaTiO_3$ abrasive at the concentration of 3 wt%. The sufficient within-wafer non-uniformity (WIWNU%)below 5% was obtained in each abrasive at all concentrations. The surface morphology of polished BTO thin film was investigated by atomic force microscopy (AFM).

  • PDF

Capacitive-type Hydrogen Gas Sensor Using Ta2O5 as Sensitive Layer (감지막으로 Ta2O5를 이용한 정전용량형 수소 가스센서)

  • Choi, Je-Hoon;Kim, Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.882-887
    • /
    • 2013
  • We investigated a SiC-based hydrogen gas sensor with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications. The sensor was fabricated by Pd/$Ta_2O_5$/SiC structure, and a thin tantalum oxide ($Ta_2O_5$) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature as well as high permeability for hydrogen gas. In the experiment, dependence of I-V characteristics and capacitance response properties on hydrogen gas concentrations from 0 to 2,000 ppm was analyzed at room temperature to $500^{\circ}C$. As the result, our sensor exploiting a $Ta_2O_5$ dielectric layer showed possibilities with regard to use in hydrogen gas sensors for high-temperature applications.

Mechanical Synthesis and Rapid Consolidation of Nanostructured W-Al2O3 Composite

  • Lee, BooRak;Jeong, GeolChae;Park, GeunO;Shon, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.343-348
    • /
    • 2018
  • Recently, the properties of nanostructured materials as advanced engineering materials have received great attention. These properties include fracture toughness and a high degree of hardness. To hinder grain growth during sintering, it is necessary to fabricate nanostructured materials. In this respect, a high-frequency induction-heated sintering method has been presented as an effective technique for making nanostructured materials at a lower temperature in a very short heating period. Nanopowders of W and $Al_2O_3$ are synthesized from $WO_3$ and Al powders during high-energy ball milling. Highly dense nanostructured $W-Al_2O_3$ composites are made within three minutes by high-frequency induction-heated sintering method and materials are evaluated in terms of hardness, fracture toughness, and microstructure. The hardness and fracture toughness of the composite are $1364kg/mm^2$ and $7.1MPa{\cdot}m^{1/2}$, respectively. Fracture toughness of nanostructured $W-Al_2O_3$ is higher than that of monolithic $Al_2O_3$. The hardness of this composite is higher than that of monolithic W.