• Title/Summary/Keyword: hierarchical models

Search Result 503, Processing Time 0.021 seconds

Review of Mixed-Effect Models (혼합효과모형의 리뷰)

  • Lee, Youngjo
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.123-136
    • /
    • 2015
  • Science has developed with great achievements after Galileo's discovery of the law depicting a relationship between observable variables. However, many natural phenomena have been better explained by models including unobservable random effects. A mixed effect model was the first statistical model that included unobservable random effects. The importance of the mixed effect models is growing along with the advancement of computational technologies to infer complicated phenomena; subsequently mixed effect models have extended to various statistical models such as hierarchical generalized linear models. Hierarchical likelihood has been suggested to estimate unobservable random effects. Our special issue about mixed effect models shows how they can be used in statistical problems as well as discusses important needs for future developments. Frequentist and Bayesian approaches are also investigated.

System for the Hierarchical Face Plastic Surgery Using the Facial 3D Models (얼굴 3D모델을 이용한 계층적 얼굴성형 시스템)

  • 신승철;조은규;유건수;박상운;최창석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1657-1660
    • /
    • 2003
  • 7 This paper offer to the system for the hierarchical face plastic surgery using of 3D models. For the system, Make hierarchical plastic object of facial 3D models, and special appointment setting of plastic object. In order to give variaty to a scale, type, angle, position of plastic object that developed plastic surgery solution. It is possible to plastic surgery that harmonize with plastic objects, solution, vector by selected user.

  • PDF

Graphical Methods for Hierarchical Log-Linear Models

  • Hong, Chong-Sun;Lee, Ui-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.755-764
    • /
    • 2006
  • Most graphical methods for categorical data can describe the structure of data and represent a measure of association among categorical variables. Among them the polyhedron plot represents sequential relationships among hierarchical log-linear models for a multidimensional contingency table. This kind of plot could be explored to describe the differences among sequential models. In this paper we suggest graphical methods, containing all the information, that reflect the relationship among all log-linear models in a certain hierarchical structure. We use the ideas of a correlation diagram.

A Study of Hierarchical Models for the Optimal Analysis of Thin Elastic Structures (박판 탄성구조물의 최적해석을 위한 계층적 모델에 관한 연구)

  • Jo, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.933-941
    • /
    • 1997
  • In the analysis of thin elastic structures such as plate and shell-like structures, classical lower-order theories like Kirchhoff and Reissner-Mindin theories are insufficient to describe the behavior of such structures in the region where the state of stresses is complex. On the other hand, the fully three dimensional theory of linear elasticity can provide desired analysis accuracy, but requires expensive computational implementation compared to the classical theories. This paper is concerned with the development of hierarchical models for elastic structures which can be used for hierarchical modeling for the analysis of such structures. Derivation and limit model analysis (when the thickness of structures tends to zero) of hierarchical models are presented together with a introduction of modeling error estimation. Also, numerical results supporting theoretical results are given.

Hierarchical Bayes Estimators of the Error Variance in Balanced Fixed-Effects Two-Way ANOVA Models

  • Kim, Byung-Hwee;Dong, Kyung-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.487-500
    • /
    • 1999
  • We propose a class of hierarchical Bayes estimators of the error variance under the relative squared error loss in balanced fixed-effects two-way analysis of variance models. Also we provide analytic expressions for the risk improvement of the hierarchical Bayes estimators over multiples of the error sum of squares. Using these expressions we identify a subclass of the hierarchical Bayes estimators each member of which dominates the best multiple of the error sum of squares which is known to be minimax. Numerical values of the percentage risk improvement are given in some special cases.

  • PDF

Random Effects Models for Multivariate Survival Data: Hierarchical-Likelihood Approach

  • Ha Il Do;Lee Youngjo;Song Jae-Kee
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.193-200
    • /
    • 2000
  • Modelling the dependence via random effects in censored multivariate survival data has recently received considerable attention in the biomedical literature. The random effects models model not only the conditional survival times but also the conditional hazard rate. Systematic likelihood inference for the models with random effects is possible using Lee and Nelder's (1996) hierarchical-likelihood (h-likelihood). The purpose of this presentation is to introduce Ha et al.'s (2000a,b) inferential methods for the random effects models via the h-likelihood, which provide a conceptually simple, numerically efficient and reliable inferential procedures.

  • PDF

On prediction of random effects in log-normal frailty models

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.203-209
    • /
    • 2009
  • Frailty models are useful for the analysis of correlated and/or heterogeneous survival data. However, the inferences of fixed parameters, rather than random effects, have been mainly studied. The prediction (or estimation) of random effects is also practically useful to investigate the heterogeneity of the hospital or patient effects. In this paper we propose how to extend the prediction method for random effects in HGLMs (hierarchical generalized linear models) to log-normal semiparametric frailty models with nonparametric baseline hazard. The proposed method is demonstrated by a simulation study.

  • PDF

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

Second-Order REML for Random Effects Models

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Random effects models which describe the dependence via random effects in various correlated data have recently received considerable attention in the biomedical literature. They include mixed linear models (MLMs), generatized linear mixed models (GLMMS) and hierarchical generalized linear models (HGLMs). For the inference Lee and Nelder (2000) proposed the first-and second-order REML (restricted maximum likelihood) methods based on hierarchical-likelihood of tee and Welder (1996). In this paper, for Poisson-gamma HGLMs the new methods are theoretically compared with marginal likelihood methods and both methods are illustrated by two practical examples.

  • PDF