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Abstract

A concept of hierarchical modeling, the newest modeling technology, has been
introduced early in 1990. This new technology has a great potential to advance the capabilities
of current computational mechanics. A first step to implement this concept is to construct
hierarchical models, a family of mathematical models which are sequentially connected by
a key parameter of the problem under consideration and have different levels in modeling
accuracy, and to investigate characteristics in their numerical simulation aspects.

Among representative model problems to explore this concept are elastic structures
such as beam-, arch-, plate- and shell-like structures because the mechanical behavior

through the thickness can be approximated with sequential accuracy by varying the
order of thickness polynomials in the displacement or stress fields.

But, in the numerical analysis of hierarchical models, two kinds of errors prevail; the
modeling error and the numerical approximation error. To ensure numerical simulation quality,
an accurate estimation of these two errors is definitely essential.

Here, a local a posteriori error estimator for elastic structures with thin domain such
as plate- and shell-like structures is derived using element residuals and flux balancing
technique. This method guarantees upper bounds for the global error, and also provides
accurate local error indicators for two types of errors, in the energy norm. Comparing to
the classical error estimators using flux averaging technique, this shows considerably reliable
and accurate effectivity indices.

To illustrate the theoretical results and to verify the validity of the proposed error
estimator, representative numerical examples are provided.

Key Words : Hierarchical model, Elastic body, A pusteriori error estimator, Flux balancing,
Effectivity index

Introduction

In every numerical analysis of natural phenomena using hierarchical models, at least two types
of errors prevail:

(i) The error inherent in the hierarchical model itself due to assumptions made on it which
may make it insufficient to depict significant complicated features of the behavior.

(ii) The numerical error in the numerical approximation of the solution corresponding to a
particular hierarchical model.
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To the best of my memory, the mathematical derivation of a priori modeling error estimate
for one-dimensional elliptic boundary value problems of scalar-valued functions was made by Vogelius
and Babuska(1981). And recently, its extension to two- and three-dimensional linear elasticity problems
with thin domain was done by the authors(1996a). As for a priori error estimation of finite element
approximations for elastic bodies with thin domain, the authors(1996b) have developed including
the locking effect, and found that two types of errors are orthogonal in the energy norm sense.

Schwab(1996) developed one simple a posteriori modeling error estimator for hierarchical
models for plate-like structures using an introduction of the decomposition in modeling error and
the use of traction residuals on the top and bottom surfaces of such structures.

This paper is concerned with a development of a posteriori error estimator which can estimate
accurately the total error due to two types of errors, that is one measured with respect to the fully
linear elasticity theory. A reliable and efficient error estimator is an essential tool for selecting
optimal hierarchical model and its optimal finite element mesh.

Here, we use the mathematical theory advanced by Ainsworth and Oden(1993). This involves
the use of localized element residuals and equilibrated flux splitting to produce upper bounds for
the global error in the energy norm. The implementation of this error estimator is composed of
four steps:

(1) We perform a finite element analysis with a setting of initial model level (q,) and initial
finite element mesh (h, py).

(2) We then calculate equilibrated flux on each interelement boundary from the solutions obtained
in step (1).

(3) Next, we solve the local equilibrated problem for each element with higher model level q
and higher approximation order p than those in the initial setting.

(4) Finally we calculate local error indicators for each element using the two solutions obtained
steps (1) and (3).

Error indicators estimated with this error estimator enable one to assess the validity of a specified
hierarchical model as well as a specified finite element mesh for thin elastic bodies such as beam-,
arch, plate- and shell-like structures.

Preliminaries

Let 2 be an open Lipschitzian domain in IR? with piecewise smooth boundary Q. The Sobolev
space H™(£2), m =non-negative integers, is a Hilbert space defined as the completion
of {ueC™(Q): |jult , o< =} in the Sobolev norm defined as

1/2

lledl g = {“;S'm JIp «u,uo}

where multi-index notation is used: a = (e, @, @3), a; €20, | al = a;+ a,+a; and Eq. (2)
defines

aldlu

Dy =
@ ] as
ox;" dx," 0xy

weak or distributional partial derivatives. The inner product in the space H™(£) is defined
as follows:

(%, 0) 0= ME‘SM fg D*u- D*»dQ

Furthermore, H7(£) is defined as the closure of C7(Q) in the space H™(L). More mathematical
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details on the definition may be referred to Adams(1978).

Next, we introduce some useful notations concerning with the finite element partition, and
which are used in the derivation of a posteriori error estimator. Let ¥ be a partition of & into
a collection of N= M &) subdomains £, with boundaries 42, such that

i) M®)<oo
ii) @2, is Lipschitzian with piecewise smooth boundary 30,

—_ N
ili) Q= Kul ‘QK' QKn‘QL= @, K==L
RxN2

iv) 2,MN Q,is either empty or common line or common smooth surface ',

Here, njy be the outward unit normal vector on the element 2, then n(s) on I',; is defined
by

n(s) = Rgag(s)=Rpens)

1 if KOL

@
Ree = ~ Ry = {—1 if K<L

and which implies n( s) = ng(s), s d@, : K is a larger element number. In addition, we
define the jump | v | of functions v across the interelement boundary I'y, of elements 2, £;.
Futhermore,

_) vg_vy if KOL
(L2l vp_vg if KL ©

we will denote i-component of traction vector t due to Cauchy stress tensor o u) using
the operator T.

t,;=om;=< I n) o W)’ (6)
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Formulation of Hierarchical Models
Variational Formulation

For a purpose of notations, let us consider a plate-like structure with uniform thickness d,
as shown in Fig. 1. Let » CR? denote an open bounded region (mid-surface) of the body @ CR3

Q

al 2
4 2
2 s @
.
X da
?/’/

Fig. 1 A plate-like structure and its geometric notations

with piecewise smooth boundary dw. For the boundary of the body, we denote the lateral
boundary and the top and bottom surfaces of the body by 92, 32 ., respectively:

2, = {z=R% (x, %,) €00, Ixy < df2}
3R, = (xR (2, x,) €dw, lx)=4d/2)
02 = aQ[Uan

Here, x; is a coordinate normal to the reference surface w. Further, let I, and Iy be the
portions of the boundary 92 such that I,UTI'y=8Q, I'yNIy= @, on which the displacements

and the applied tractions are specified (i.., Dirichlet and Neumann boundary regions), respectively.
Usually, I3, is restricted to the lateral boundary and I, being to the top and bottom surfaces.

For convenience of notations, let us define dwy, dwy by

{xelpl 2=0)

I

a(I)D

BwN = ((xl,xz,O) e(l)’ (xl,xz_ia'/2) EFN)

Viewing as a three-dimensional elastic body (as opposed to plate or shell), govemning equations
are written in the following elliptic boundary value problems,

~DTolw) = f in Q
= @0, on [}
t, on PN

i

u
I( ») of )
and the strain-displacement relations and the constitutive equations are expressed as follows:

e(uw) = Du
o(u = EDu

U]

L))

&)

(10)
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Here, DT denotes divergence-like operator in the cartesian coordinate system and e, o are
vectors of Cauchy strains and stresses; o= {¢,, ¢, &5 715, 733, 731}, 6= {0,,0, 05 115, 75, 7). And n
is the unit outward normal at the boundary 30,

ax, 0 0 d/ox, 0 9/ox,
DT=| 0 a/ox, 0 3/dx, 8/ox; O
0 0 d/axy 0O 9/dx, dlox,

while fe[LZ2(Q)]®, te[L*(I'y)]% respectively, represent body force and applied traction
vectors. E is (6 x 6) matrix containing Lame constants x4, A for linear elastic materials (Szabo and
Babuska (1991)).

We define the space V() by { v(x)e[H!(@]*: v= 0 on I})}, then this space is admissible
displacement space for the elliptic boundary value problem of Eq. (9) because every vector-valued
function v V() satisfies homogeneous boundary conditions on I, and has finite strain energy U( v):

W) = J'z-fge(v):a(v)dQ

= 4 [ (DOT(EDwde

Now, let q be (q,,q,,q5) With q; being non-negative integers, and define the function space V()
defined on the mid-surface by

o) = { v(xl»xz) veH (@) v =0 on aa)N)
Next, we define the subspace V(L) C V(L) by introducing a set of Legendre polynomials &, (x;)
and by specifying a set of their maximum orders (q,,q,,q3)-

V() ={ o x)|v,= ;‘::0 O (x,,%,) * T,(2x3/d), B € N w), i=1,2,3}

Then, from the density argument (Adams(1978)), Vi) —> V(L) as q—co.

The space V() is a restricted subspace of V(&) with finite dimension in the thickness variation
in displacement fields. In this subspace, Galerkin weighed residual method for the three-dimensional
linear elasticity is expressed as following statement:

Find u®e VL) such that V v?e VYD)
al u% vH)=2¢ ( v9
Where, the Dbilinear functional a(+, *): VI(QxVY(A—-R and the linear

functional ¢ ( - ): V9(Q) —Rare expressed by the following dimensionally-reduced form defined on
the mid-surface, respectively:

o, ) = [ {7 (Do) ED ) ey} do

£(v9) = fm{f;;z fTv"dxg,] do + fam,,{ t* v%w,d2)+ ¢t~ vw, —d/2)} do

an

(12)

13)

(14

15)

(16)
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Obviously, the variational problem (15) is two dimensional because integrations through the
thickness are solely related to the thickness polynomials ¥,(x,), as shown in Eq. (16).

The solution u? of (15) is defined as a projection of u in the bilinear functional, ie.,

ol u— u° v)=0,V ve V°(2). We can construct a sequential set { u%}”, _, of solution according to
different sets of (q;,q,.q;). We define this set as hierarchical models and denote by

Fy={u%¢=01,+, -, ,} an
This hierarchical family is constructed by sequentially specifying the order(the model level) q.
Hereafter, we will denote a hierarchical model with the model level (q,,q,,q;) as the (q,,q,,q;)

model. Their characteristics are well explained in the work of Babuska and Li(1992), Szabo and
Babuska(1991), Cho and Oden(1996a, 1996b), Oden and Cho(1996) and Schwab(1996). We record

here that (q;.q;,q;)* models represent hierarchical models constructed by replacing E with E®
, material moduli being used in the Reissner-Mindlin theory.

Finite Element Approximation

The restriction of the test function v to @y belongs to the space V(£2y) denoted by
Vi={ vkl v%= v} (18)

Let be v§ a local finite element approximation obtained using approximation polynomials

of order py defined on the mid-surface. Since the globél finite element approximation v 9-* should
be continuous at the interelement boundaries for producing finite energy, the global finite element
approximation V *P(Q) contains vector-valued test functions such that

v R [C(OP, VorteVek(Q) (19)
Then, the finite element approximation for the (q,,q,,q,) hierarchical modg:l is as follows:

Find v3tev el (Q) such that V ve¢beV ar(Q)
d( ua.h' vc.h) — 1( vc.h) (20)

Since the assumed admissible displacement fields are in the form of Eq. (14), finite element
approximation is to find approximate solutions 6,'®(x,,x,) corresponding to each thickness
polynomial order using two-dimensional basis functions {¢,(x,,x,)} so that

O/ Mxy,xy) = f:‘o O LE iz, xp) @n

Clearly, at each finite element node, (q,+aq,+a;+3) degrees of freedom { & {}%°,_ are
assigned.
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A Posteriori Error Estimation
Upper Bound and Local Error Indicators

Let u and u? be the exact (three dimensional elasticity theory) and the hierarchical model
with a model level q={q, q,q,}, respectively. Then, the modeling error e%< V(L) of the hierarchical
model is defined as e®= u— u? And let u®? be the solution of the finite element approximation
for the hierarchical model, then its finite element approximation error e "< V%(£) is denoted
by e %®= u%— u %" Combining these two errors, we can define the finite element approximation
error e measured with respect to the exact solution:

es Q), = e'+ e%*= y— yo*
The energy norm || - ||z is defined using the bilinear functional a( -, -) in Eq. (16). And let

ilollg="V a(v, v)

the linear functionals 7: V(2)—R, II,:V *-»R and J:V(£2)—R be defined as, respectively

v = —éa( v, )~ £(v)
o(v = —%a( v* v —2( v9)
Ho) = Mo)y—H(u*?

Next, consider a difference between the two potential functionals /I( «) and I7,( u **) , where

—%—a( u, u)— £( u)——zLa(u”"', utMH+(urh)

__%_a( w— uv.ﬁ' w— uﬂ.h)_[(u)+[(u0.h)

+al u, w)—al u, u®*

J %)

we use the fact that a(u®®, u?®) and ¢(u9?) are restrictions from the space V into V?°
, respectively. It is not difficult to prove that we have

—Hlelz=Kw = M w)~I{ u®¥) = inf ,_ gy I 0)— I uH)
We define the local solution spaces V, and Vg in a subdomain Q,, and introduce two broken

Vi = {0 e[H (201 v= 0 on d2xNIpH}
Vi = VNV

spaces as in Eq. (27). Then veV(%)and V(%) are discontinuous across the interelement

boundary

)= I v, wo)owa. vis) = I v, vis) o v

(22

(23)

@29

25)

(26

@7

28
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I'yp- In the local spaces Vi V%, the bilinear and the linear functionals a( -, -), ¢(-), IT
restricted to a finite element are denoted by ay., ), £ (., /lk, Tespectively.

We introduce the splitting function a g, : I',;( s)— R on the interelement boundary I'y,(s)
as

g (D+adig(s)=1, £=1,2,3

With this splitting functions, we define the self-equilibrated k-component of traction acting
on the element Q, along I'y,(s) defined as

(M) o w®M -, = ' T of uf ™+ d { M ong) of uf-™)"

Then, it can be easily verified the relation of Eq. (31) for every veVe(%). Next, we extend
£)
ﬁl[m‘\mm M o ut,gds= 3 [ [LoMICm) o w4, ds

IT to the spaces V(%) and V*(% ), respectively and consider the difference functional (potential
functional) J,: (§)—R.

Ho)—IKu®?, veW§)

%)
S nd o -m e[
+ 2 [ oI o )y

]3-(1))

vT I n) o u®*) ]_ads}

We ensure that the interelement jumps [ v] are constrained to be zero by using a Lagrange
multiplier g, and that leads to a introduction of the Lagrange functional A defined by,

A: (&) E—-R

ACv, ) =TJe( )= p([[ o]])
where, the £ denotes the space of Lagrange multipliers. From Egs. (32) and (33),

Ao, = S BL =Tk uN= [ oTCICm o uth) | a)
— w0 oD + 5 [ I oMC T o u o) s

This functional is composed of sum of local contributions from each element 2, and extra

coupled terms from each interelement boundary I'y,. But, if we take p#= Tz, then A becomes
a sum of

WD =3 [ oM< Tm) o u*h),_ds

purely uncoupled local contributions.
Using the relation of Eq. (31), we notice that, for any veV(Q), A(v, g#)=J(v). Then
from Eq. (26),

(29)

(30)

31

(32)

(33)

(34

(35)
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—tlell=Kw =inf ,epng ACo, 1)

Now, let us define the functional @: V(¥)— R as &(v) = sup 4e gA(v, p), then it shows
that

Kv), veV(Q
O(v)=
4+, peV(D)

and  2inf |y, & V) =2inf |y @ v) = |l e [l}. Moreover
inf yevs)UP 4eg A0, 1)

2 sup e gf ,epey Alo, 1)
2 inf ey Mo, W, VRS E

I?Zf ve V(.Q)]( 1))

With the choice of a Lagrange multiplier 7z in Eq. (35), an upper bound of the global error
is given below:

1 elli- < -2 gl)mf vEVx{ T v)— Ii( u‘-")_f vT{ I( ng of 2 %% ]_ads}

39,\3Q2

Since the second term in Eq. (39) computed from the finite element approximate solution u %-®
is invariant, we need only to solve the following local element-wise variational problems:

Find ugeVy such that VveVv,
a U D=L+ [ oI o w™h) | ds)

Obviously, equilibrated local problems are defined on three-dimensional broken spaces V.
With this ug, Eq. (39) becomes

2 inf ”EVK{ I )= uh = [ 07 Ing) o u®h) | _, a5}

= ax( Tug ug) + 2L u®®)

39,\0Q

=GK( ;K“‘ u”"', ’;‘K_ u”'h)+f

# (N ng o u®®) _ ds

32,39
and from the fact of [[ u%?]] = 0, Eq. (41) results in:
-~ — ) T
Nelle < apl Ty _2u®* uK_u""')+§frn[[ um I M ng) o u®®) oS
= aK( ’;K_uq'h, ’12,(_14”"')

By denoting ay( uyx _u®®, uyx _u®?) as 7%, we finally have

£)
el <SS 7

The quantity 7y is thus error indicator in the element 2y and contributes to the global error

(36)

(37

(38

(39)

(40

@1

(42)

43
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bound.
Next, consider the discretization of the local element-wise problem (40) by introducing the

local finite element approximation solution space V& = ¥ %" as a restriction of the initial finite
element approximation space V *“*£) in Eq. (19) to the element @, with higher py and q. Then,
the corresponding discrete local element-wise problem is:

Find T V% such that V vt eVh
a e M= 2 LN+ o (Mn o wh) | ds)

9,\0Q

And then, (75)2=ag( Ak~ u ek, Th— us?)=(7)%

Calculation of Self-Equilibrating Fluxes

Here, we introduce the local flux splitting and equilibration method of Ainsworth and Oden
(1993). Finite element approximations of hierarchical models are two-dimensional, but the flux splitting
on interelement boundaries is three-dimensional. Let F(¥ ) denote the set of all vertices in the partition,
and consider any vertex A € F(%). Associated with each such vertex node A is a piecewise trilinear
shape function ¢,( x), which vanishes at every other vertex node in this partition and has a unit
value at the node A. With this shape function, the flux splitting function a; (s) of Eq. (29) is
expressed on the interelement face Iy, which has four end nodes; A,B,C and D:

do(s) = éAa*KL( Do s), k=1,2,3

Now, return to the local weak formulation of a single element Ke % with a sufficiently
smooth vector-valued test function ¢( x) on the element K. If we take ¢=(1,1,1)7,

— T
alu, D=2, D+ [ 1T of w) ds
Eq. (46) characterizes the equilibration of an element £, and its solution is the restriction
of true solution u to the element Qy, ul, . If we replace u in Eq. (46) with the initial finite

element approximate solution u %" and rewrite the above equation for each component of the test
function 1= 1'+ 12+ 1= {(1,0,0)+(0,1,0)+(0,0, D}, then Eq. (47) represents the compatibility

k
al uth 1= £ (14 [ CTCm o wo)y_ s
condition on the k-interelement traction component < - ¥ _, for the existence of local solution.
Since u %P is given from the initial finite approximation, compatibility condition imply to
find splitting factors o, for the self-equilibrated traction component that makes the element Qy

be in force equilibrium in the k-direction.
If we consider the difference, RHS-LHS in Eq. (47), then which means the lack in the force
equilibrium in the k-direction on @, and we denote it by ak. Because the trilinear shape

function ¢, ( x) has the following property,

#4(2)=(1,0,007, V=zeL

AET(¥)

44)

(45)

(46)

47

43
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the lack a% of force equilibrium in the k-direction is expressed in terms of shape functions.

£
Ak

k
Dka

The above equation has significant importance of the fact that flux splitting problem coupled
with the elements in the patch F(%) of the node A becomes the decoupled problem for each node

A.

il

Ak
A;(K‘) KA

ERlo+ [ GACTUm) o w ™R ds— agl woh, )

3Q,\0Q

For computational convenience, we introduce an anti-symmetric operator x,: I'x; —R,

a=d—1/2 = xh+xi=0

then, using these new quantities, we have the following relations from Eqgs. (30) and (50):

(ICm) o w*_,

i

S TCn) of ug®+ I o ugh)*
CICn) o w9+ 2 L[ ICn) o u®9)]1*

I

With further definition of the following two quantities using the above relations,

k
bk, a

k
PrLK. A

Eq. (49) becomes

ek + [ IR o ws R pds— ax ust, ¢h)
— [ G4LL ICn) of u "]
Ty

g
i

'3 —- k &
K.A bk a EOXLK,A PLk. A

ko ~
bg.a go X1k a

Then, x%x= — x%, because x5y is anti-symmetric and oty , is symmetric. We will use x ¥y
for L > K; then the vanishing of af | is equivalent to write

- ~4 "
Z: Xik— X5 = b
Lty T Kfv'bo KL KA

Now, consider a patch of elements sharing the common node A denoted by

Ta={UQxCTQ |2k supp (¢,))}

Then, we construct a system of equations such as Eq. (56) for the elements in the patch
of the node A. Consequently, we can split equilibrated fluxes on interelement boundaries with respect
to each node by solving the following linear equations,

with.

MA;Az bk, k=1,2,3, VAEF(S)

49)

(50)

(1)

(52

(53

(54

(55

(56)
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il

' 1 * Y T
by = (% 4.V, 4. pnal

o= {3 ) DK

Here, M, is the N, xN,, underlying matrix for a patch consisting of N,,, elements and N .,
interelement faces sharing common node A.

After solving the linear system of equations, we compute flux splitting factors o}, through
the relation of Eq. (50), and calculate self-equilibrated tractions ¢ - > ,_, on interelement boundaries.
Finally, with the computed self-equilibrated tractions, we solve the local variational problems defined

in Eq. (44) to get better approximate solutions Wy which are being used for estimating error indicators.

Numerical Experiments

Fig. 2 shows a clamped square plate-like body with uniform thickness. Uniformly distributed
traction t, is applied on the top surface. From the symmetry, only a quarter of the body is taken
for numerical analysis. Data used for the analysis are: E=10"N/m? v=0.3, a=1.0m and

t,=5.0x10"*N/m?.

tI 4
o ———
7 (ITLIII SS9/, ——
A
/
2
7 a
V
7
7 |
7 7 —

Fig. 2 A square plate-like structure subjected to uniform normal traction (a/d=20)

We use the (1,1,00* hierarchical model and uniform 9 quadratic elements. Vertical displacement
component is shown in Fig. 3, where “DOM" indicates the ratio (or called the bending dominance)
of bending strain energy to total strain energy calculated from the approximated solution. The finite
element simulation was carried out using hpg-adaptive finite element CODE developed by the first
author, which is fully automatic program capable of systematic selection of the optimal model and
the optimal finite element mesh to meet the predefined analysis tolerance.

In order to evaluate the quality of the proposed ertor estimator, the effectivity index ¢ is
computed. Since the exact analytic solution for this problem is not available, we use the approximated

6 = Estimated error/ Exact error

solution u . using relatively higher model and higher approximation orders with the same
mesh partition (here, we use q=(8,8,8) and p=8). With this alternative choice, we compute local
and

57

(58)
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Fig. 3 Spectral distribution of vertical displacement component { p=2, q=(1,1,0)+ )

global effectivity index 6y, 6 defined by

b0 = vl ne= || uk— w"* gog / |1 0 ep— u®*l g0

%) 1/2 —
{E 02"} = Twk— w M g /|1 o= w7 g

1

0

Table. 1 contains results of estimation of local and global error indicators and effectivity indices,
and shows comparison with the conventional error estimator which simply splits interelement fluxes
by half (ayx; =1/2). Numerical results show that local error indices of the proposed method are

considerably improved and more evenly distributed.

Table. 1 Estimated error and effectivity index for plate-like structure

Elem. Error (E-7) Effectivity Index
No. True With Equil. Without Equil. With Equil. Without Equil.
1 0.85307 0.87095 0.88607 1.02096 1.03868
2 0.53854 0.66702 0.81643 1.23855 1.51599
3 0.97427 0.99747 1.04193 1.02381 1.06944
4 0.53854 0.66702 0.81643 1.23855 1.51599
5 0.35162 0.54995 0.70580 1.56403 2.00726
6 0.66379 0.64317 0.75346 0.96894 1.13509
7 0.97427 0.99747 1.04193 1.02381 1.06944
8 0.66379 0.64317 0.75346 0.96894 1.13509
9 0.35837 0.31199 0.38437 0.87059 1.07255
Total 2.08314 220576 2.46389 1.05886 1.18278

(59
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Next, we consider a cylindrical roof supported by two diaphragms, a representative engineering
example, as shown in Fig. 4. By a diaphragm support is meant u, = u,= 0, and loading is due
to its own weight y. The same material with the previous plate-like body is selected, and the other
data are L=5m, R=1m and y=4.0N/m® Using the symmetry of the body, numerical analysis
was done by applying the (1,1,0)* hierarchical model and uniform 9 quadratic elements to a quarter.

Roof

=~
-

R 9 L]
3 / Diaphragm

Diaphragm

Fig. 4 A cylindrical roof supported by vertical diaphragms (R/d=20)

PROJECT:; Shell-Like Radial Displ,

Fig. 5 Spectral distribution of radial displacement component { p=2, q=(1,1,0)* )

Fig. 5 depicts the radial displacement component, where we can find out from the value of
“DOM” that this problem is not bending-dominated. And since the real radial displacement component
is opposite to the radial direction, its magnitude is negative in the figure.



30/ 2002. 11. Vol.3 No.1 KSTAM, Member of IUTAM

Table. 2 Estimated error and effectivity index for shell-like structure

Elem. Error ( E-3 ) Effectivity Index
No. True With Equil. Without Equil. With Equil. Without Equil.
1 0.31097 0.32848 0.46491 1.05630 1.49503
2 0.29901 0.37936 0.52926 1.26875 1.77007
3 0.43736 0.48229 048249 1.10273 1.10318
4 0.66185 0.75400 1.09591 1.13924 1.65583
5 0.43974 0.61942 1.07351 1.40861 2.44123
6 0.76130 0.67162 0.70302 0.88220 0.92345
7 0.86592 0.91143 1.35222 1.05256 1.56160
8 0.53236 0.53972 1.19800 1.01044 2.25037
9 0.95932 0.76257 0.81017 0.79490 0.84452

Total 1.88199 1.89454 2.73803 1.00666 1.45486

Following the same procedure to estimate error indicators and effectivity indices, we obtain
the numerical results presented in Table. 2. We can see the improvement in the shell-like problems,
too. In particular, big deviation in the conventional method is reported in the elements 5 and 8,
while acceptable values are obtained with the proposed method.

Fig. 6 Distribution of local relative errors ( p=2, g=(1,1,0)* )
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Fig. 7 Distribution of local relative errors { p=2, g=(1,1,2) )

The above Fig. 6 shows a distribution of local relative errors obtained by the proposed method.
Here, relative error is defined by 7§/ U(u “*). From the figure, the global relative error is 57.2%
of total strain energy, and major contribution is come from the elements 1,3 and 7. It is interesting
for the element 1 to have big error, however this phenomenon disappears if the (1,1,2) hierarchical
model, the next higher model by one, is used, as shown in Fig. 7.

0 L9BOL J140E400 2108400 28000 x /k’

Fig. 8 Distribution of local relative errors { p=2, q={1,1,0}* )
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: PROJECT: Shell-Like Rd.En\t@ Mothod)

Fig. 9 Distribution of local relative errors { p=2, g=(2,2,2) )

Figs. 8 and 9 represent distribution of local relative errors when the (1,1,0)* and the (2,2,2)
hierarchical models, respectively, are employed for the approximation. A decrease in the global
relative error from 54.5% to 44.5% indicates that the proposed error estimator successfully measures
the modeling error component.

- Conclusions and Discussion

In this paper, with a brief introduction of the concept of hierarchical models, we derived
an a posteriori error estimator for hierarchical models for elastic structures with thin domains such
as plate- and shell-like structures, and which can measure the total error with respect to the
three-dimensional linear elasticity theory. In the development of the proposed error estimator, flux
splitting technique for element-wise force equilibrium and Lagrange multiplier method are employed.
In order to approximate the exact solution, we use self-equilibrated interelement tractions and solve
the localized finite element problem using higher model levels and higher approximation orders.

From the two representative model problems, theoretical arguments underlying the development
have been verified. Compared to the conventional error estimator which splitts interclement fluxes
by half, better effectivity indices uniformly distributed over the elements have been obtained.

With this tool, the analyst can estimate his numerical quality and further he can control model
levels, mesh sizes and approximation orders in order to enhance the accuracy. Then, the quality
assurance and time saving can be achieved.

Here, a question is “can we apply the same theoretical results to other types of hierarchical
models with different key parameters being used to determine the model level ?”. Among other
types of problems may be the analysis of phase composite bodies, general fluid flows, inelastic
bodies, etc. Still, there has not been remarkable studies on this point, however one invariant core
is to develope techniques capable of obtaining the solution of the highest model in each type of
problems.
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