• 제목/요약/키워드: hidden data

검색결과 970건 처리시간 0.028초

Data Hiding Technique using the Characteristics of Neighboring Pixels and Encryption Techniques

  • Jung, Soo-Mok
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.163-169
    • /
    • 2022
  • In this paper, we propose a data hiding technique that effectively hides confidential data in the LSB of an image pixel by using the characteristics of the neighboring pixels of the image and the encryption techniques. In the proposed technique, the boundary surface of the image and the flat surface with little change in pixel values are investigated. At the boundary surface of the image, 1 bit of confidential data is encrypted and hidden in the LSB of the boundary pixel to preserve the characteristics of the boundary surface. In the pixels of the plane where the change in pixel value is small, 2 bits secret data is encrypted and hidden in the lower 2 bits of the corresponding pixel. In this way, when confidential data is hidden in an image, the amount of confidential data hidden in the image is greatly increased while maintaining excellent image quality. In addition, the security of hidden confidential data is strongly maintained. When confidential data is hidden by applying the proposed technique, the amount of confidential data concealed increases by up to 92.2% compared to the existing LSB method. The proposed technique can be effectively used to hide copyright information in commercial images.

Infrastructure Mode IEEE 802.11 무선랜 시스템에서 효율적인 은닉 단말 발견 방법을 통한 MAC 성능 개선 (MAC Performance Enhancement by Efficient Hidden Node Detection in Infrastructure Mode IEEE 802.11 Wireless LANs)

  • 최우용
    • 대한산업공학회지
    • /
    • 제34권2호
    • /
    • pp.246-254
    • /
    • 2008
  • In this paper, a new efficient hidden node detection method is proposed to decide whether the RTS/CTS mechanism is necessary to resolve the hidden node problem for the data transmission of each node in infrastructure mode IEEE 802.11 wireless LANs. The nodes, for which the RTS/CTS mechanism is found to be not necessary by the hidden node detection method, can transmit their data frames without performing the RTS/CTS exchange. Only the nodes, for which the RTS/CTS mechanism is found to be necessary by the hidden node detection method, perform the RTS/CTS exchange before their data frame transmissions.

Analysis and Detection of Malicious Data Hidden in Slack Space on OOXML-based Corrupted MS-Office Digital Files

  • Sangwon Na;Hyung-Woo Lee
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.149-156
    • /
    • 2023
  • OOXML-based MS-Office digital files are extensively utilized by businesses and organizations worldwide. However, OOXML-based MS-Office digital files are vulnerable to forgery and corruption attack by including hidden suspicious information, which can lead to activating malware or shell code being hidden in the file. Such malicious code can cause a computer system to malfunction or become infected with ransomware. To prevent such attacks, it is necessary to analyze and detect the corruption of OOXML-based MS-Office files. In this paper, we examine the weaknesses of the existing OOXML-based MS-Office file structure and analyzes how concealment and forgery are performed on MS-Office digital files. As a result, we propose a system to detect hidden data effectively and proactively respond to ransomware attacks exploiting MS-Office security vulnerabilities. Proposed system is designed to provide reliable and efficient detection of hidden data in OOXML-based MS-Office files, which can help organizations protect against potential security threats.

A Smoothing Method for Stock Price Prediction with Hidden Markov Models

  • Lee, Soon-Ho;Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.945-953
    • /
    • 2007
  • In this paper, we propose a smoothing and thus noise-reducing method of data sequences for stock price prediction with hidden Markov models, HMMs. The suggested method just uses simple moving average. A proper average size is obtained from forecasting experiments with stock prices of bank sector of Korean Exchange. Forecasting method with HMM and moving average smoothing is compared with a conventional method.

  • PDF

기술도해 생성을 위한 가시화 데이터 은선 제거 알고리즘 (Hidden Line Removal for Technical Illustration Based on Visualization Data)

  • 심현수;최영;양상욱
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.455-463
    • /
    • 2006
  • Hidden line removal(HLR) algorithms can be devised either in the image space or in the object space. This paper describes a hidden line removal algorithm in the object space specifically for the CAD viewer data. The approach is based on the Appel's 'Quantitative Invisibility' algorithm and fundamental concept of 'back face culling'. Input data considered in this algorithm can be distinguished from those considered for HLR algorithm in general. The original QI algorithm can be applied for the polyhedron models. During preprocessing step of our proposed algorithm, the self intersecting surfaces in the view direction are divided along the silhouette curves so that the QI algorithm can be applied. By this way the algorithm can be used for any triangulated freeform surfaces. A major advantage of this algorithm is the applicability to general CAD models and surface-based visualization data.

An Improved Reversible Data Hiding Technique using Histogram Characteristics and Double Encryption Technique

  • Soo-Mok Jung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권1호
    • /
    • pp.132-139
    • /
    • 2024
  • In this paper, we proposed an effective technique that uses location-based encryption technique and spatial encryption technique to improve security vulnerabilities in previous reversible data hiding technique that can hide twice as much confidential data as the NSAS technique. If the proposed technique is applied to hide confidential data in an image, the same amount of confidential data can be hidden compared to the previous technique, but the security of confidential data is greatly enhanced. By hiding confidential data in an image using the proposed technique, high-quality stego-image can be generated, making it impossible to visually distinguish whether confidential data is hidden in the image. Additionally, confidential data can be restored from stego-image without loss, and the original cover image can also be restored without loss. Through experiments, it was confirmed that when confidential data is hidden by applying the proposed technique, the quality of the stego-image is maintained up to 39.73dB, and the security of the stego-image is greatly strengthened.

Hidden Layer의 개수가 Deep Learning Algorithm을 이용한 콘크리트 압축강도 추정 모델의 성능에 미치는 영향에 관한 기초적 연구 (A Basic Study on the Effect of Number of Hidden Layers on Performance of Estimation Model of Compressive Strength of Concrete Using Deep Learning Algorithms)

  • 이승준;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.130-131
    • /
    • 2018
  • The compressive strength of concrete is determined by various influencing factors. However, the conventional method for estimating the compressive strength of concrete has been suggested by considering only 1 to 3 specific influential factors as variables. In this study, nine influential factors (W/B ratio, Water, Cement, Aggregate(Coarse, Fine), Fly ash, Blast furnace slag, Curing temperature, and humidity) of papers opened for 10 years were collected at 4 conferences in order to know the various correlations among data and the tendency of data. The selected mixture and compressive strength data were learned using the Deep Learning Algorithm to derive an estimated function model. The purpose of this study is to investigate the effect of the number of hidden layers on the prediction performance in the process of estimating the compressive strength for an arbitrary combination.

  • PDF

인공신경망 이론을 이용한 충주호의 수질예측 (Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm)

  • 정효준;이소진;이홍근
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

New criteria to fix number of hidden neurons in multilayer perceptron networks for wind speed prediction

  • Sheela, K. Gnana;Deepa, S.N.
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.619-631
    • /
    • 2014
  • This paper proposes new criteria to fix hidden neuron in Multilayer Perceptron Networks for wind speed prediction in renewable energy systems. To fix hidden neurons, 101 various criteria are examined based on the estimated mean squared error. The results show that proposed approach performs better in terms of testing mean squared errors. The convergence analysis is performed for the various proposed criteria. Mean squared error is used as an indicator for fixing neuron in hidden layer. The proposed criteria find solution to fix hidden neuron in neural networks. This approach is effective, accurate with minimal error than other approaches. The significance of increasing the number of hidden neurons in multilayer perceptron network is also analyzed using these criteria. To verify the effectiveness of the proposed method, simulations were conducted on real time wind data. Simulations infer that with minimum mean squared error the proposed approach can be used for wind speed prediction in renewable energy systems.

모드 분리 제어기를 이용한 시스템 규명 : 히든 모드를 갖는 구조물에의 적용 (System Identification Using Mode Decoupling Controller : Application to a Structure with Hidden Modes)

  • 하재훈;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1334-1337
    • /
    • 2006
  • System identification is the field of modeling dynamic systems from experimental data. As a modeling technique, we can mention finite element method (FEM). In addition, we are able to measure modal data as the experimental data. The system can be generally categorized into a gray box and black box. In the gray box, we know mathematical model of a system, but we don't know structural parameters exactly, so we need to estimate structural parameters. In the black box, we don't know a system completely, so we need to identify system from nothing. To date, various system identification methods have been developed. Among them, we introduce system realization theory which uses Hankel matrix and Eigensystem Realization Algorithm (ERA) that enable us to identify modal parameters from noisy measurement data. Although we obtain noise-free data, however, we are likely to face difficulties in identifying a structure with hidden modes. Hidden modes can be occurred when the input or output position comes to a nodal point. If we change a system using a mode decoupling controller, the hidden modes can be revealed. Because we know the perturbation quantities in a closed loop system with the controller, we can realize an original system by subtracting perturbation quantities from the closed loop system. In this paper, we propose a novel method to identify a structure with hidden modes using the mode decoupling controller and the associated example is given for illustration.

  • PDF