• 제목/요약/키워드: hidden Markov models (HMMs)

검색결과 30건 처리시간 0.022초

은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상 (Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models)

  • 이종석;박철훈
    • 정보처리학회논문지B
    • /
    • 제14B권7호
    • /
    • pp.523-530
    • /
    • 2007
  • 본 논문에서는 자동 독순(automatic lipreading)의 인식기로 쓰이는 은닉 마르코프 모델(HMM: hidden Markov model)의 새로운 확률적 최적화 기법을 제안한다. 제안하는 기법은 전역 최적화가 가능한 확률적 기법인 모의 담금질과 지역 최적화 기법을 결합하는 것으로써, 알고리즘의 빠른 수렴과 좋은 해로의 수렴을 가능하게 한다. 제안하는 알고리즘이 전역 최적해로 수렴함을 수학적으로 보인다. 제안하는 기법을 통해 HMM을 학습함으로써 기존의 알고리즘이 지역해만을 찾는 단점을 개선함으로써 향상된 독순 성능을 나타냄을 실험으로 보인다.

A Smoothing Method for Stock Price Prediction with Hidden Markov Models

  • Lee, Soon-Ho;Oh, Chang-Hyuck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.945-953
    • /
    • 2007
  • In this paper, we propose a smoothing and thus noise-reducing method of data sequences for stock price prediction with hidden Markov models, HMMs. The suggested method just uses simple moving average. A proper average size is obtained from forecasting experiments with stock prices of bank sector of Korean Exchange. Forecasting method with HMM and moving average smoothing is compared with a conventional method.

  • PDF

Recognition of 3D hand gestures using partially tuned composite hidden Markov models

  • Kim, In Cheol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권2호
    • /
    • pp.236-240
    • /
    • 2004
  • Stroke-based composite HMMs with articulation states are proposed to deal with 3D spatio-temporal trajectory gestures. The direct use of 3D data provides more naturalness in generating gestures, thereby avoiding some of the constraints usually imposed to prevent performance degradation when trajectory data are projected into a specific 2D plane. Also, the decomposition of gestures into more primitive strokes is quite attractive, since reversely concatenating stroke-based HMMs makes it possible to construct a new set of gesture HMMs without retraining their parameters. Any deterioration in performance arising from decomposition can be remedied by a partial tuning process for such composite HMMs.

A Review of Three Different Studies on Hidden Markov Models for Epigenetic Problems: A Computational Perspective

  • Lee, Kyung-Eun;Park, Hyun-Seok
    • Genomics & Informatics
    • /
    • 제12권4호
    • /
    • pp.145-150
    • /
    • 2014
  • Recent technical advances, such as chromatin immunoprecipitation combined with DNA microarrays (ChIp-chip) and chromatin immunoprecipitation-sequencing (ChIP-seq), have generated large quantities of high-throughput data. Considering that epigenomic datasets are arranged over chromosomes, their analysis must account for spatial or temporal characteristics. In that sense, simple clustering or classification methodologies are inadequate for the analysis of multi-track ChIP-chip or ChIP-seq data. Approaches that are based on hidden Markov models (HMMs) can integrate dependencies between directly adjacent measurements in the genome. Here, we review three HMM-based studies that have contributed to epigenetic research, from a computational perspective. We also give a brief tutorial on HMM modelling-targeted at bioinformaticians who are new to the field.

Maximum Likelihood Training and Adaptation of Embedded Speech Recognizers for Mobile Environments

  • Cho, Young-Kyu;Yook, Dong-Suk
    • ETRI Journal
    • /
    • 제32권1호
    • /
    • pp.160-162
    • /
    • 2010
  • For the acoustic models of embedded speech recognition systems, hidden Markov models (HMMs) are usually quantized and the original full space distributions are represented by combinations of a few quantized distribution prototypes. We propose a maximum likelihood objective function to train the quantized distribution prototypes. The experimental results show that the new training algorithm and the link structure adaptation scheme for the quantized HMMs reduce the word recognition error rate by 20.0%.

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • 융합신호처리학회논문지
    • /
    • 제15권2호
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

운동심상 EEG 패턴분석을 위한 HSA 기반의 HMM 최적화 방법 (HSA-based HMM Optimization Method for Analyzing EEG Pattern of Motor Imagery)

  • 고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.747-752
    • /
    • 2011
  • HMMs (Hidden Markov Models) are widely used for biological signal, such as EEG (electroencephalogram) sequence, analysis because of their ability to incorporate sequential information in their structure. A recent trends of research are going after the biological interpretable HMMs, and we need to control the complexity of the HMM so that it has good generalization performance. So, an automatic means of optimizing the structure of HMMs would be highly desirable. In this paper, we described a procedure of classification of motor imagery EEG signals using HMM. The motor imagery related EEG signals recorded from subjects performing left, right hand and foots motor imagery. And the proposed a method that was focus on the validation of the HSA (Harmony Search Algorithm) based optimization for HMM. Harmony search algorithm is sufficiently adaptable to allow incorporation of other techniques. A HMM training strategy using HSA is proposed, and it is tested on finding optimized structure for the pattern recognition of EEG sequence. The proposed HSA-HMM can performs global searching without initial parameter setting, local optima, and solution divergence.

A Local Feature-Based Robust Approach for Facial Expression Recognition from Depth Video

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권3호
    • /
    • pp.1390-1403
    • /
    • 2016
  • Facial expression recognition (FER) plays a very significant role in computer vision, pattern recognition, and image processing applications such as human computer interaction as it provides sufficient information about emotions of people. For video-based facial expression recognition, depth cameras can be better candidates over RGB cameras as a person's face cannot be easily recognized from distance-based depth videos hence depth cameras also resolve some privacy issues that can arise using RGB faces. A good FER system is very much reliant on the extraction of robust features as well as recognition engine. In this work, an efficient novel approach is proposed to recognize some facial expressions from time-sequential depth videos. First of all, efficient Local Binary Pattern (LBP) features are obtained from the time-sequential depth faces that are further classified by Generalized Discriminant Analysis (GDA) to make the features more robust and finally, the LBP-GDA features are fed into Hidden Markov Models (HMMs) to train and recognize different facial expressions successfully. The depth information-based proposed facial expression recognition approach is compared to the conventional approaches such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and Linear Discriminant Analysis (LDA) where the proposed one outperforms others by obtaining better recognition rates.

은닉 마르코프 모델의 다목적함수 최적화를 통한 자동 독순의 성능 향상 (Improved Automatic Lipreading by Multiobjective Optimization of Hidden Markov Models)

  • 이종석;박철훈
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.53-60
    • /
    • 2008
  • 본 논문은 입술의 움직임을 통해 음성을 인식하는 자동 독순의 인식 성능 향상을 위해 인식기로 사용되는 은닉 마르코프 모델을 분별적으로 학습하는 기법을 제안한다. 기존에 많이 사용되는 Baum-Welch 알고리즘에서는 각 모델이 해당 클래스 데이터의 확률을 최대화하는 것을 목표로 학습시키는 반면, 제안하는 알고리즘에서는 클래스간의 분별력을 높이기 위해 두 가지의 최소화 목적함수로 이루어진 새로운 학습 목표를 정의하고 이를 달성하기 위해 모의 담금질 기법에 기반을 둔 다목적함수 전역 최적화 기법을 개발한다. 화자종속 인식 실험을 통해 제안하는 기법의 성능을 평가하며, 실험결과 기존의 학습 방법에 비해 오인식율을 상대적으로 약 8% 감소시킬 수 있음을 보인다.

Human Activity Recognition Using Spatiotemporal 3-D Body Joint Features with Hidden Markov Models

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2767-2780
    • /
    • 2016
  • Video-based human-activity recognition has become increasingly popular due to the prominent corresponding applications in a variety of fields such as computer vision, image processing, smart-home healthcare, and human-computer interactions. The essential goals of a video-based activity-recognition system include the provision of behavior-based information to enable functionality that proactively assists a person with his/her tasks. The target of this work is the development of a novel approach for human-activity recognition, whereby human-body-joint features that are extracted from depth videos are used. From silhouette images taken at every depth, the direction and magnitude features are first obtained from each connected body-joint pair so that they can be augmented later with motion direction, as well as with the magnitude features of each joint in the next frame. A generalized discriminant analysis (GDA) is applied to make the spatiotemporal features more robust, followed by the feeding of the time-sequence features into a Hidden Markov Model (HMM) for the training of each activity. Lastly, all of the trained-activity HMMs are used for depth-video activity recognition.