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For the acoustic models of embedded speech recognition 
systems, hidden Markov models (HMMs) are usually quantized 
and the original full space distributions are represented by 
combinations of a few quantized distribution prototypes. We 
propose a maximum likelihood objective function to train the 
quantized distribution prototypes. The experimental results 
show that the new training algorithm and the link structure 
adaptation scheme for the quantized HMMs reduce the word 
recognition error rate by 20.0%. 

Keywords: Embedded speech recognition, maximum 
likelihood distribution clustering (MLDC), quantized HMM. 

I. Introduction 
Spoken language interfaces for mobile applications are 

important for the convenient operation of small mobile devices 
such as cellular phones and personal digital assistants (PDAs). 
Hidden Markov models (HMMs), of which states are 
represented as a mixture of Gaussian distributions, have been 
widely used for automatic speech recognition. Since HMMs 
require many Gaussians to obtain high recognition accuracy, 
they have a major disadvantage in the deployment of 
embedded speech recognition systems for mobile devices with 
low processing power. The memory requirement and the 
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computation time of embedded speech recognizers need to be 
reduced without loss of recognition accuracy. 

Typically, the recognition accuracy of a speech recognizer is 
increased by environment adaptation techniques such as 
maximum likelihood linear regression (MLLR) [1]. However, 
because mobile devices are used in unknown environments 
where the acoustic conditions change often, it is not always 
possible to collect enough adaptation data in advance. 
Therefore, we need an adaptation method which requires very 
little adaptation data, such as a few seconds of speech data. 

We aim to design a speech recognition system that can run 
on mobile devices with low processing power and a small 
amount of memory without sacrificing recognition accuracy 
and that can be adapted to a new mobile environment with 
very little adaptation data. We propose a maximum likelihood 
distribution clustering (MLDC) algorithm to train the 
embedded speech recognition systems and study several 
adaptation methods for the embedded speech recognizers in the 
framework of MLLR. The experimental results show that the 
proposed MLDC algorithm combined with the link structure 
adaptation method decreases the word error rate (WER) of the 
recognizer by 20.0% compared to a conventional method. 

II. Maximum Likelihood Distribution Clustering 

One common approach that reduces both the size of the 
models and the computation time is to use parameter tying 
techniques, such as subspace distribution clustering HMMs 
(SDCHMMs) [2]. SDCHMMs divide the input feature space 
into multiple subspaces and cluster similar distributions within 
each subspace to produce a set of distribution prototypes for 
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each subspace. The original full space distributions are 
represented as combinations of a few subspace distribution 
prototypes. Therefore, obtaining proper subspace Gaussian 
distribution prototypes is an important issue for SDCHMMs. 
In [2], subspace distributions are clustered by the k-means 
clustering algorithm using a distance measure such as 
Euclidean distance or Bhattacharyya distance. It minimizes the 
quantization error between the original continuous density 
HMMs (CDHMMs) and the SDCHMMs. However, the 
quantization error may not be directly related to the likelihood 
of the training data. For example, Euclidean distance does not 
make use of the variance of the training data. Thus, minimizing 
the quantization error does not necessarily maximize the 
likelihood of the training data, which is a commonly used 
training criterion for speech recognition systems. In this letter, 
we propose a novel training procedure using the maximum 
likelihood criterion to produce high-accuracy SDCHMMs. 

The likelihood of the training data, given a set of k-th 
subspace distribution prototypes, can be defined as 
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where T is the number of training vectors; L is the number of 
distribution prototypes, which is the same as the number of 
clusters; t

klγ  is the probability of training vector t
ko  coming 

from the  l-th cluster, that is, occupation probability; and 
( | )t

k klP o N  is the likelihood of observation vector ,t
ko  given 

the l-th cluster prototype .klN  The likelihood of the training 
data in (1) can be increased by maximizing Baum’s auxiliary 
function [3]. It can be simplified as follows when a Gaussian 
distribution is used for each state of the SDCHMMs [4]: 
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where CB
kμ  and CB

kΣ  represent the codebooks for the k-th 
subspace mean vectors and covariance matrices, respectively, 
of which codewords are the distribution prototypes. Therefore, 

CB[ ]k lμ  and CB[ ]k lΣ  are the l-th elements of the codebooks, 
which are the mean vector and the covariance matrix of 
prototype ,klN respectively. 

By using (2) as an objective function when clustering the 
subspace Gaussian distributions to produce a set of prototypes 
for the k-th subspace, a set of clusters which maximizes the 
likelihood of the training data for the k-th subspace can be 
obtained. After finding the maximum likelihood clusters, a 
representative subspace Gaussian distribution for each 

cluster, that is, CB[ ]k lμ  and CB[ ]k lΣ , can be obtained, which 
becomes the subspace distribution prototype for the cluster. 
Note that CB[ ]k lμ  and CB[ ]k lΣ  are not calculated directly 
from the data. Instead, they are computed from the statistics of 
the Baum-Welch algorithm using a method similar to that  
described in [4]. 

 
Algorithm. MLDC 
Project each Gaussian of the original CDHMMs on to the K subspaces.
for each subspace k 

• Build a cluster that contains all subspace Gaussian distributions 
which originate from the original CDHMMs. 

• Set the number of clusters, L, equal to 1. 
repeat 

• Increase the number of clusters L by splitting the cluster that 
gives rise to the largest likelihood improvement using (2) when 
it is split. 

repeat 
• Find all subspace Gaussian distributions to move from one 

cluster to another which result in the largest likelihood 
improvement using (2). 

• Update the subspace distribution prototype of each cluster as 
in [4]. 

until the likelihood change falls below a preset threshold. 
until L is equal to the number of clusters required. 

end 
 
The MLDC algorithm assigns each subspace Gaussian 

distribution into the cluster which results in the largest 
likelihood improvement. After all subspace Gaussian 
distributions are assigned, the set of representative Gaussian 
distributions are re-estimated. These steps are repeated until the 
likelihood increase falls below a preset threshold in the inner 
most loop of the algorithm. 

Another important issue for embedded speech recognition is 
the rapid adaptation of the recognizers. We are considering 
unknown and constantly changing mobile environments where 
the recognizers are used. Since there is not a large amount of 
adaptation data available for such environments, the adaptation 
methods for the recognizers have to improve the recognition 
accuracy with a limited amount of adaptation data. This is 
called rapid adaptation. Some adaptation schemes for the 
SDCHMMs can be found in [5]-[7], namely, full space 
adaptation, codeword adaptation, and link structure adaptation. 
Some experimental results using maximum a posteriori 
(MAP) estimation can be found in [5], [7]. However, MAP is 
not suitable for rapid adaptation because it requires a relatively 
large amount of adaptation data. In this letter, we use the 
adaptation methods in the framework of MLLR, which 
requires less adaptation data than MAP. In the following 
section, we show that the link structure adaptation, which 
adapts the parameter tying structure while keeping the 
codebooks unchanged, is suitable for rapid adaptation. 
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III. Experiments 

To evaluate the performance of our method, we performed 
speaker independent continuous speech recognition 
experiments using the Resource Management corpus. The 
speech feature vector used in the experiments was composed 
of 12 mel-frequency cepstral coefficients, one normalized log 
energy, and their first- and second-order time derivatives. For 
the initial CDHMMs, we trained acoustic models which are 
word internal triphones and decision-tree-based tied-state 
HMMs. There were 1,439 states in the CDHMMs and 6 
Gaussian distributions per state. The WER of the baseline 
system was 6.2%. 

The baseline CDHMMs were converted into 39-subspace 
SDCHMMs. Figure 1 shows the WERs of the SDCHMMs 
obtained using the conventional k-means clustering method [2] 
and using the MLDC method for various numbers of clusters. 
It can be seen that the SDCHMMs obtained using the proposed 
method have consistently lower WERs than those obtained 
using the conventional method. The SDCHMMs using the 
MLDC method showed the lowest WER of 5.5% when the 
number of subspace Gaussian prototypes was 64. The WER of 
the SDCHMM system was lower than that of the CDHMM 
system because the parameters of the SDCHMMs were more 
robustly estimated by the parameter sharing effect of the 
SDCHMMs [2]. This effect was diminished when the number 
of prototypes was more than 64.  

In the next experiment, we compared the performance of the  
 

 

Fig. 1. Word error rates of the SDCHMMs obtained using the
k-means clustering method and using the MLDC method.
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Fig. 2. Word error rates of the three adaptation schemes using
SDCHMMs with MLDC in the framework of MLLR.
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three adaptation methods for the SDCHMMs with 64 clusters 
obtained using the MLDC method. We varied the number of 
adaptation words from 1 to 11 to analyze the effect of the 
amount of adaptation data. Figure 2 shows that the link 
structure adaptation method is more rapid than the other two. 
This is because it imposes a stronger restriction (more inductive 
bias) on the adaptation process than the other two methods. With 
11 adaptation words, the link structure adaptation method 
achieved a WER of 5.0%. 

IV. Conclusion 

We proposed a novel distribution clustering algorithm for 
SDCHMMs, which is based on the maximum likelihood 
criterion, and evaluated three adaptation schemes for the 
SDCHMMs in the framework of MLLR. The proposed 
MLDC method and the MLLR-based link structure adaptation 
scheme reduced the WER by 20.0% (from 6.2% to 5.0%). 
Link structure adaptation can be combined with recently 
developed faster approaches [8], [9]. 
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