• Title/Summary/Keyword: hessian

Search Result 111, Processing Time 0.028 seconds

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Time-domain Seismic Waveform Inversion for Anisotropic media (이방성을 고려한 탄성매질에서의 시간영역 파형역산)

  • Lee, Ho-Yong;Min, Dong-Joo;Kwon, Byung-Doo;Yoo, Hai-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.51-56
    • /
    • 2008
  • The waveform inversion for isotropic media has ever been studied since the 1980s, but there has been few studies for anisotropic media. We present a seismic waveform inversion algorithm for 2-D heterogeneous transversely isotropic structures. A cell-based finite difference algorithm for anisotropic media in time domain is adopted. The steepest descent during the non-linear iterative inversion approach is obtained by backpropagating residual errors using a reverse time migration technique. For scaling the gradient of a misfit function, we use the pseudo Hessian matrix which is assumed to neglect the zero-lag auto-correlation terms of impulse responses in the approximate Hessian matrix of the Gauss-Newton method. We demonstrate the use of these waveform inversion algorithm by applying them to a two layer model and the anisotropic Marmousi model data. With numerical examples, we show that it's difficult to converge to the true model when we assumed that anisotropic media are isotropic. Therefore, it is expected that our waveform inversion algorithm for anisotropic media is adequate to interpret real seismic exploration data.

  • PDF

Computing Algorithm for Genetic Evaluations on Several Linear and Categorical Traits in A Multivariate Threshold Animal Model (범주형 자료를 포함한 다형질 임계개체모형에서 유전능력 추정 알고리즘)

  • Lee, D.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.137-144
    • /
    • 2004
  • Algorithms for estimating breeding values on several categorical data by using latent variables with threshold conception were developed and showed. Thresholds on each categorical trait were estimated by Newton’s method via gradients and Hessian matrix. This algorithm was developed by way of expansion of bivariate analysis provided by Quaas(2001). Breeding values on latent variables of categorical traits and observations on linear traits were estimated by preconditioned conjugate gradient(PCG) method, which was known having a property of fast convergence. Example was shown by simulated data with two linear traits and a categorical trait with four categories(CE=calving ease) and a dichotomous trait(SB=Still Birth) in threshold animal mixed model(TAMM). Breeding value estimates in TAMM were compared to those in linear animal mixed model (LAMM). As results, correlation estimates of breeding values to parameters were 0.91${\sim}$0.92 on CE and 0.87${\sim}$0.89 on SB in TAMM and 0.72~0.84 on CE and 0.59~0.70 on SB in LAMM. As conclusion, PCG method for estimating breeding values on several categorical traits with linear traits were feasible in TAMM.

Design Optimization Using Two-Point Diagonal Quadratic Approximation(TDQA) (이점 대각 이차 근사화(TDQA) 기법을 적용한 최적설계)

  • Kim, Min-Soo;Kim, Jong-Rip;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.386-391
    • /
    • 2001
  • This paper presents a new two-point approximation method based on the exponential intervening variable. To avoid the lack of definition of the conventional exponential intervening variables due to zero- or negative-valued design variables the shifting level into each exponential intervening variable is introduced. Then a new quadratic approximation, whose Hessian matrix has only diagonal elements of different values, is proposed in terms of these intervening variables. These diagonal elements are computed in a closed form, which correct the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the original function at the previous point. Finally, the authors developed a sequential approximate optimizer, solved several typical design problems used in the literature and compared these optimization results with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.

  • PDF

Development of Hybrid Image Stabilization System for a Mobile Robot (이동 로봇을 위한 하이브리드 이미지 안정화 시스템의 개발)

  • Choi, Yun-Won;Kang, Tae-Hun;Saitov, Dilshat;Lee, Dong-Chun;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.157-163
    • /
    • 2011
  • This paper proposes a hybrid image stabilizing system which uses both optical image stabilizing system based on EKF (Extended Kalman Filter) and digital image stabilization based on SURF (Speeded Up Robust Feature). Though image information is one of the most efficient data for object recognition, it is susceptible to noise which results from internal vibration as well as external factors. The blurred image obtained by the camera mounted on a robot makes it difficult for the robot to recognize its environment. The proposed system estimates shaking angle through EKF based on the information from inclinometer and gyro sensor to stabilize the image. In addition, extracting the feature points around rotation axis using SURF which is robust to change in scale or rotation enhances processing speed by removing unnecessary operations using Hessian matrix. The experimental results using the proposed hybrid system shows its effectiveness in extended frequency range.

An Efficient Dynamic Response Optimization Using the Design Sensitivities Approximated Within the Estimate Confidence Radius

  • Park, Dong-Hoon;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1143-1155
    • /
    • 2001
  • In order to reduce the expensive CPU time for design sensitivity analysis in dynamic response optimization, this study introduces the design sensitivities approximated within estimated confidence radius in dynamic response optimization with ALM method. The confidence radius is estimated by the linear approximation with Hessian of quasi-Newton formula and qualifies the approximate gradient to be validly used during optimization process. In this study, if the design changes between consecutive iterations are within the estimated confidence radius, then the approximate gradients are accepted. Otherwise, the exact gradients are used such as analytical or finite differenced gradients. This hybrid design sensitivity analysis method is embedded in an in-house ALM based dynamic response optimizer, which solves three typical dynamic response optimization problems and one practical design problem for a tracked vehicle suspension system. The optimization results are compared with those of the conventional method that uses only exact gradients throughout optimization process. These comparisons show that the hybrid method is more efficient than the conventional method. Especially, in the tracked vehicle suspension system design, the proposed method yields 14 percent reduction of the total CPU time and the number of analyses than the conventional method, while giving similar optimum values.

  • PDF

Efficient Mechanical System Optimization Using Two-Point Diagonal Quadratic Approximation in the Nonlinear Intervening Variable Space

  • Park, Dong-Hoon;Kim, Min-Soo;Kim, Jong-Rip;Jeon, Jae-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1257-1267
    • /
    • 2001
  • For efficient mechanical system optimization, a new two-point approximation method is presented. Unlike the conventional two-point approximation methods such as TPEA, TANA, TANA-1, TANA-2 and TANA-3, this introduces the shifting level into each exponential intervening variable to avoid the lack of definition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these shifted exponential intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.

  • PDF

An Implementation of a Feature Extraction Hardware Accelerator based on Memory Usage Improvement SURF Algorithm (메모리 사용률을 개선한 SURF 알고리즘 특징점 추출기의 하드웨어 가속기 설계)

  • Jung, Chang-min;Kwak, Jae-chang;Lee, Kwang-yeob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.77-80
    • /
    • 2013
  • SURF algorithm is an algorithm to extract feature points and to generate descriptors from input images. It is robust to change of environment such as scale, rotation, illumination and view points. Because of these features, it is used for many image processing applications such as object recognition, constructing panorama pictures and 3D image restoration. But there is disadvantage for real time operation because many recognition algorithms such as SURF algorithm requires a lot of calculations. In this paper, we propose a design of feature extractor and descriptor generator based on SURF for high memory efficiency. The proposed design reduced a memory access and memory usage to operate in real time.

  • PDF

Design Optimization Using Two-Point Diagonal Quadratic Approximation (이점 대각 이차 근사화 기법을 적용한 최적설계)

  • Choe, Dong-Hun;Kim, Min-Su;Kim, Jong-Rip;Jeon, Jae-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1423-1431
    • /
    • 2001
  • Based on the exponential intervening variable, a new two-point approximation method is presented. This introduces the shifting level into each exponential intervening variable to avoid the lack of def inition of the conventional exponential intervening variables due to zero-or negative-valued design variables. Then a new quadratic approximation whose Hessian matrix has only diagonal elements of different values is proposed in terms of these intervening variables. These diagonal elements are determined in a closed form that corrects the typical error in the approximate gradient of the TANA series due to the lack of definition of exponential type intervening variables and their incomplete second-order terms. Also, a correction coefficient is multiplied to the pre-determined quadratic term to match the value of approximate function with that of the previous point. Finally, in order to show the numerical performance of the proposed method, a sequential approximate optimizer is developed and applied to solve six typical design problems. These optimization results are compared with those of TANA-3. These comparisons show that the proposed method gives more efficient and reliable results than TANA-3.