• Title/Summary/Keyword: herbicidal potential

Search Result 26, Processing Time 0.031 seconds

Herbicidal Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Substance (생분해성 광활성 물질 5-aminolevulinic acid의 제초활성)

  • Chon, Sang-Uk;Kim, Young-Min
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.38-45
    • /
    • 2007
  • Laboratory and greenhouse experiments were conducted to determine the herbicidal effect of two types of ${\delta}$-aminolevulinic acid (ALA), microbiologically-produced ALA (Bio-ALA) and synthetically produced ALA (Synthetic-ALA), on plant growth and chlorophyll content of Chinese cabbage. ALA effect on early plant growth was greatly concentration dependant, showing significant inhibition at higher concentrations. Both pre- and post-emergence application of ALA exhibited significant degree of photodynamic phytotoxicity. Older plants with many leaves were more tolerant to ALA than younger plants, showing less injury. No significant difference in herbicidal activity of two types of ALA, Bio-ALA and Synthetic-ALA, on plant height and chlorophyll content of Chinese cabbage was observed. However, residual biological activity and physico-chemical properties of Synthetic-ALA were more stable than those of Bio-ALA. Our results suggest that ALA had herbicidal potential with both pre- and post-emergence application, and that the chemical may be a valuable mean of eco-friendly weed control based on natural microbial substance.

Natural Photodynamic Activity of 5-Aminolevulinic Acid Produced by E. coli Overexpressing ALA Synthase from Bradyrhizobium japonicum

  • Chon Sang-Uk;Jung Sun-Yo;Boo Hee-Ock;Han Seung-Kwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.356-361
    • /
    • 2006
  • The present study was conducted to determine plant growth and physiological responses of corn, barnyardgrass, and soybean to ALA (5-aminolevulinic acid). ALA effect on early seedling growth of test plants was greatly concentration dependant, suggesting that it inhibits at higher concentrations. No significant difference in herbicidal activity of two types of ALA on plant height and weight of test plants was observed. Barnyardgrass was the most sensitive to ALA and followed by corn and soybean, indicating that both crop plants were less affected by ALA concentration as well as different growth stages than barnyardgrass. Greatly reduced chlorophyll contents from leaves of three plant species were observed with increasing of ALA concentration. Compared with untreated controls, higher amounts of three tetrapyrroles were detected from three crop plants, indicating more accumulation in ALA-treated plants. The differential selectivity among plant species would be explained with the differences in tetrapyrrole accumulating capabilities, the susceptibility of various greening groups of plant species to the accumulation of various tetrapyrroles, and their metabolism in various plant tissues. The results indicate that negative biological potential of ALA exhibited differently on plant species, and that the photodynamic herbicidal activity against susceptible plants highly correlated with the extent of tetrapyrrole accumulation by the species.

Phytotoxic Effect of 5-Aminolevulinic Acid, a Biodegradable Photodynamic Biomaterial, on Rice and Barnyardgrass

  • Chon, Sang-Uk
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.268-275
    • /
    • 2006
  • ALA (5-aminolevulinic acid) has been proposed as a tetrapyrrole-dependent photodynamic herbicide by the action of the protoporphyrinogen IX oxidase (Protox IX). A study was conducted to determine photodynamic herbicidal effect of ALA on seedling growth of rice (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli Beauv. var. oryzicola Ohwi) under dry and wet conditions. ALA effect on early plant growth of rice and barnyardgrass was greatly concentration dependant, suggesting that it promotes plant growth at very low concentration and inhibits at high concentration. No significant difference in herbicidal activity of biologically and synthetically produced ALAs on plant lengths of test plants was observed ALA exhibited significant photodynamic activity regardless of PSDIP and its duration. Significant shoot growth inhibition by ALA soaking treatment exhibited apparently, indicating that ALA absorbed through root system was translocated into shoot part of plants. ALA reduced plant heights of rice and barnyardgrass seedlings by 6% and 27%, respectively, showing more tolerant to ALA in rice under wet condition. Leaf thickness was reduced markedly by ALA with increasing of ALA concentration, due to mainly membrane destruction and severe loss of turgidity in mesophyll cells, although the epidermal was little affected. It was observed that photodynamic herbicidal activity of ALA applied by pre-and post-emergence application exhibited differently on plant species, and that the activity of ALA against susceptible plants was highly correlated with growing condition.

Herbicidal Activity of $\delta$-aminolevulinic Acid on Several Plants as Affected by Application Methods

  • Chon, Sang-Uk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.50-55
    • /
    • 2003
  • Herbicidal activity of $\delta$-aminolevulinic acid(ALA), an intermediate for the biosynthesis of tetrapyrroles such as chlorophyll, heme, bacteriochlorophyll, and vitamin $\textrm{B}_{12}$ analogues, was examined to determine the variation in phytotoxic potential against different plant species as affected by different application methods. Seed-soaking treatment, ALA at low concentrations did not affect shoot and root lengths of test plants while at highest concentration reduced them by 20 to 30%. Alfalfa showed the most tolerant response to ALA in both pre- and post-emergence application, and followed by rice. When applied with pre-emergence, cotyledons of Chinese cabbage were severely bleached with 0.5 mM of ALA at 24 hrs after application, and root growth of rice, barnyard grass, and alfalfa was significantly inhibited with increasing of concentration. With post-emergence application, ALA at 2 to 4 mM reduced shoot and root growths of Chinese cabbage and barnyard grass completely. Herbicidal effects of ALA were more enhanced in the treatment combined with 2,2-dipyridyl sthan single application in barnyard grass and Chinese cabbage. The results suggest that alfalfa was the most tolerant to ALA among the tested plants, and that post-emergence application of ALA exhibited greatest photodynamic activity against tested plants.

Evaluation of a Fungal Strain, Myrothecium roridum F0252, as a Bioherbicide Agent

  • Lee, Hyang-Burm;Kim, Jin-Cheol;Hong, Kyung-Sik;Kim, Chang-Jin
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.453-460
    • /
    • 2008
  • In the course of in vitro and in vivo screening for bioherbicidal agents, a hyphomycete fungus, Myrothecium sp. F0252 was selected as a candidate for the biocontrol of weeds. The isolate was identified as Myrothecium roridum Tode ex. Fries based on the morphological characteristics and 18S ribosomal DNA sequence analysis and registered as Myrothecium roridum F0252. In order to evaluate the in vitro effect of M. roridum F0252 on germination of ladino clover and white clover (Trifolium repens L.) seeds, spore solution of the fungus was employed in two concentrations, $6.5{\times}10^6$ and $2.5{\times}10^7$ spores per mL and then inoculated to the seeds. The fungal spores inhibited the seed germination, infected the seedlings, and caused an abnormal withering and inhibition of seedling growth. In addition, when the herbicidal activity of crude ethyl acetate extract from the liquid culture was assessed on a mini-plant, duck-weed (Lemna paucicostata (L.) Hegelm.), the extract showed high inhibitory effect at the level of $12.5{\mu}g$ per mL. On the other hand, in vivo herbicidal activity of M. roridum F0252 was evaluated by a whole plant spray method. M. roridum F0252 exhibited strong and broad-spectrum herbicidal activity. The herbicidal values ranged from 95-100% against 7 weeds, including Abutilon avicennae and Xanthium strumarium, and 70-80% against Digitaria sanguinalis and Sagittaria pygmaea. When the nutritional utilization (95 carbon sources) pattern of M. roridum F0252 was investigated, it varied with water activity ($a_w$) and temperature conditions, supplying good, basic information in regard to nutritional utilization for proper cultivation and formulation. Our results showed that M. roridum F0252 might be used as a potential biocontrol agent against weedy plants.

Herbicidal Activity of Natural Product Chrysophanic Acid (천연 물질 Chrysophanic acid의 제초 활성)

  • Jang, Hyun-Woo;Seo, Bo-Ram;Hwang, Hyun-Jin;Kim, Jae-Deog;Kim, Jin-Seog;Kim, Song-Mun;Chun, Jae-Chul;Choi, Jung-Sup
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.143-152
    • /
    • 2010
  • Herbicidal characterisitcs of natural product chrysophanic acid were investigated in a greenhouse condition. At early- and middle-stage post-emergence treatments, several grasses and broadleaf weeds appeared to be very susceptible to chrysophanic acid. However, any significant herbicidal activity treated by pre-emergence did not occur at concentration ranges from 31.3 to 1,000 ug $mL^{-1}$. Herbicidal activity of chrysophanic acid estimated by visual injury for large crabgrass was much higher when applied at 7 to 14 days after seeding than at 21 and 28 days after seeding. By post-emergence treatment, chrysophanic acid caused very considerable phytotoxicity on several grasses and broadleaf crops. In herbicidal interaction experiments determined by Colby's method, the effect of chrysophanic acid and caryophyllene oxide tank-mixture showed very high synergistic activity. Although chrysophanic acid did not give any pre-emergence effect, herbicidal spectrum tended to be very wide and strong when treated by post-emergence. These results suggest that chrysophanic acid possesses a possible potential to develop as a natural herbicide.

Herbicidal Activity of d-Limonene to Burcucumber (Sciyos angulatus L.) with Potential as Natural Herbicide (천연물 유래 d-Limonene의 가시박 방제효과)

  • Choi, Jung-Sup;Ko, Young-Kwan;Cho, Nam-Gyu;Hwang, Ki-Hwan;Koo, Suk-Jin
    • Korean Journal of Weed Science
    • /
    • v.32 no.3
    • /
    • pp.263-272
    • /
    • 2012
  • The potential as natural herbicide of d-limonene natural agent was conducted on several weeds in a greenhouse and Sciyos angulatus in field condition. Herbicidal activity of foliar application at a concentration of 100 and 200 kg ai $ha^{-1}$ of d-limonene on seven weed species was completely killed in a greenhouse condition. Also, d-limonene at a concentration of 50 kg ai $ha^{-1}$ was completely killing on Abutilon theophrasti, Aeschynomene indica, Echinochloa crus-galli and Digitaria ciliaris 3 days after treatment. While pre-emergence treatment of d-limonene concentration of 12.5 to 200 kg ai $ha^{-1}$ showed not significant visible damages. Phytotoxic symptoms of d-limonene by foliar treatment were characterized by wilting and burn-down of leaves and stems followed by discoloration, finally, plant death. Crop selectivity at d-limonene concentration of 100 kg ai $ha^{-1}$ over to five main crops including Zea mays by foliar application was not at all. Field trial of foliar treatment with d-limonene 70 to 140 kg ai $ha^{-1}$ have effectively controled over 5~20 leaf stages of S. angulatus at the natural habitats. And herbicidal efficacy of foliar application on S. angulatus with carrier volume in field condition was increased with dose dependent manners. These results suggest that d-limonene is considered possible as herbicide, and may be further optimized for natural agent for environmental friendly natural herbicide.

Herbicidal Activity and KAPAS Inhibition of Juglone with Potential as Natural Herbicide (천연 Naphthoquinone계 Juglone의 KAPAS 저해 및 제초활성 특성)

  • Choi, Jung-Sup;Lim, Hee-Kyung;Seo, Bo-Ram;Kim, Jin-Seog;Choi, Chun-Whan;Kim, Young-Sup;Ryu, Shi-Yong
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.240-249
    • /
    • 2011
  • The potential of juglone a plant naphthoquinone as a natural herbicide on new target, 7-keto-8-amino pelargonic acid synthetase (KAPAS) in the early step of biotin biosynthesis pathway, was performed in vitro and in vivo. Juglone effectively inhibited KAPAS activities in vitro and the $IC_{50}$ was $9.5{\mu}M$. Foliar application of juglone showed very good herbicidal activity to the eight-tested weed species. Among them, Solanum nigrum was completely controlled at a concentration of $250{\mu}g\;mL^{-1}$ with main symptoms of desiccation or burndown. Digitaria sanguinalis and Aeschynomene indica were also sensitive to juglone treatment. All eight weed species were controlled by 90~100% at a concentration of $500{\mu}g\;mL^{-1}$. However, soil application of juglone to Digitaria sanguinalis did not show any herbicidal symptoms. Cellular leakage from cucumber leaf squares treated with juglone increased depending on the concentrations increased from 6.25 to $100{\mu}M$ after 24 hours incubation with or without light. However, chlorophyll loss in cucumber leaf squares was negligible. Biotin supplements significantly rescued the inhibition of germination rate of Arabidopsis thaliana seeds previously inhibited by the juglone. Our results suggest that the juglone is a possible environmental friendly herbicide candidate with a new target KAPAS inhibiting activity.