Natural Photodynamic Activity of 5-Aminolevulinic Acid Produced by E. coli Overexpressing ALA Synthase from Bradyrhizobium japonicum

  • Chon Sang-Uk (Callus Co. Ltd., TBI Center, Gwangju Institute of Science and Technology) ;
  • Jung Sun-Yo (School of Biological Sciences and Biotechnology, Kyungbook National University) ;
  • Boo Hee-Ock (Phyto M&F, BIC, Dongshin University) ;
  • Han Seung-Kwan (Center for EM Research and Development, Jeonju University)
  • Published : 2006.09.01

Abstract

The present study was conducted to determine plant growth and physiological responses of corn, barnyardgrass, and soybean to ALA (5-aminolevulinic acid). ALA effect on early seedling growth of test plants was greatly concentration dependant, suggesting that it inhibits at higher concentrations. No significant difference in herbicidal activity of two types of ALA on plant height and weight of test plants was observed. Barnyardgrass was the most sensitive to ALA and followed by corn and soybean, indicating that both crop plants were less affected by ALA concentration as well as different growth stages than barnyardgrass. Greatly reduced chlorophyll contents from leaves of three plant species were observed with increasing of ALA concentration. Compared with untreated controls, higher amounts of three tetrapyrroles were detected from three crop plants, indicating more accumulation in ALA-treated plants. The differential selectivity among plant species would be explained with the differences in tetrapyrrole accumulating capabilities, the susceptibility of various greening groups of plant species to the accumulation of various tetrapyrroles, and their metabolism in various plant tissues. The results indicate that negative biological potential of ALA exhibited differently on plant species, and that the photodynamic herbicidal activity against susceptible plants highly correlated with the extent of tetrapyrrole accumulation by the species.

Keywords

References

  1. Askira, Y., B. Rubin, and H. D. Rabinowitch. 1991. Differential response to the herbicidal activity of ${\delta}-aminolevulinic$ acid in plants with high and low SOD activity. Free Rad. Res. Comms. 12-13 : 837-843
  2. Avissar, Y. J., J. G. Ormerod, and S. I. Beale. 1989. Distribution of 5-aminolevulinic acid acid biosynthetic pathways among phototrophic bacterial groups. Arch. Microbiol. 151 : 513-519 https://doi.org/10.1007/BF00454867
  3. Beale, S. I. 1990. Biosynthesis of the tetrapyrrole pigment precursor, ${\delta}-aminolevulinic$ acid, from glutamate. Plant Physiol. 93 : 1273-1279 https://doi.org/10.1104/pp.93.4.1273
  4. Beale, S. I. and J. D. Weinstein. 1990. Tetrapyrrole metabolism in photosynthetic organisms. In Biosynthesis of Heme and Chlorophylls (Ed.), Dailey, H.A. pp. 287-391. McGraw-hill, New York
  5. Beale, S. I. and P. A. Castelfranco. 1974. The biosynthesis of ${\delta}-aminolevulinic$ acid in higher plants. II. Formation of $^{14}C-{\delta}-aminolevulinic$ acid from labeled precursors in greening plant tissues. Plant Physiol. 53 : 297-303 https://doi.org/10.1104/pp.53.2.297
  6. Boger, P. and K. Wakabayashi. 1999. Peroxidizing herbicides. Springer, Berlin, Heidelberg
  7. Choi, C., B. S. Hong, H. C. Sung, H. S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene for Bradyrhizobium japonicum. Biotech. Letters 21 : 551-554 https://doi.org/10.1023/A:1005520007230
  8. Chon S. U. 2003. Herbicidal activity of ${\delta}-aminolevulinic$ acid on several plants as affected by application methods. Korean J. Crop Sci. 48 : 50-55
  9. Chon, S. U., Y. I. Kuk, and J. O. Guh. 2004. Microbiological production and herbicidal mechanism of 5-aminolevulinic acid as tetrapyrrole-dependent photodynamic herbicide. Korean J. Weed Science 24 : 161-172
  10. Duke, S. O., J. Lydon, J. M. Becerril, T.D. Sherman, L. P. Lehnen, and H. Matsumoto. 1991. Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39 : 465-473
  11. Kuk, Y. I., G. S. Lim, S. U. Chon, T. E. Hwang, and J. O. Guh. 2003. Effect of 5-Aminolevulinic acid on growth and Inhibition of Various Plant Species. Kor. J. Crop Sci. 48 : 127-133
  12. Lichtenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148 : 350-382 https://doi.org/10.1016/0076-6879(87)48036-1
  13. Menon, I. A., S. D. Persad, and H. F. Haberman. 1989. A comparison of the phytotoxicity of protoporphyrin, coproporphyrin, and uroporphyrin using a cellular system in vitro. Clin. Biochem. 22 : 197-200 https://doi.org/10.1016/S0009-9120(89)80077-3
  14. Mock, H. P., U. Keetman, and B. Grimm. 2002. Photosensitising tetrapyrroles induce antioxidative and pathogen defense responses in plants, in: D. Inze, M. van Montagu (Eds.). Oxidative Stress in Plants. Taylor and Francis, London, NY. pp.155-170
  15. Papenbrock, J. and B. Grimm. 2001. Regulatory network of tetrapyrrole biosynthesis-studies of intracellular signaling involvedin metabolicand developmental control of plastids. Planta 213 : 667-681 https://doi.org/10.1007/s004250100593
  16. Rebeiz, C. A., A. Montazer-Zouhoor, H. J. Jopen, and S. M. Wu. 1984. Photodynamic herbicides: Concept and phenomenology. Enzyme Microb. Technol. 6 : 390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  17. Rebeiz, C. A., A. Motazer-Zouhoor, J. M. Mayasich, B. C. Tripathy, S. M. Wu, and C. C. Bebiz. 1988a. Photodynamic herbicides. Recent developments and molecular basis of selectivity. Crit. Rev. Plant Sci. 6 : 385-486 https://doi.org/10.1080/07352688809382256
  18. Rebeiz, C. A., J. A. Juvik, and C. C. Rebeiz. 1988b. Photodynamic insecticides I. Concept and phenomenology. Pesticide Biochem. Physiol. 30: 11-27 https://doi.org/10.1016/0048-3575(88)90055-7
  19. Rebeiz, C. A., K. N. Reddy, and U. B. Nandilhalli, 1990. Tetrapyrrole-dependent photodynamic herbicide. Photochem. Photobiol. 52 : 1099-1117 https://doi.org/10.1111/j.1751-1097.1990.tb08451.x
  20. SAS (Statistical Analysis System). 2000. SAS/STAT user's guide. Version 7. Cary, NC: Statistical Analysis Systems Institute. Electronic Version
  21. Sasaki, K., T. Tanaka, Y. Nishizawa, and M. Hayashi. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor. Appl. Microbiol. Biotechnol. 32 : 727-731 https://doi.org/10.1007/BF00164749
  22. Scalla, R. and M. Matringe. 1994. Inhibitors of protoporphyrinogen oxidase as herbicides: Diphenyl ethers and related photobleaching molecules. Rev. Weed Sci. 6 : 103-132
  23. Schuimaker, J. J., P. Baas, L. M. van Leengoed, F.W. van der Meulen, W. M. Star, and N. van Zandwijk. 1999. Photodynamic therapy: a promising new modality for treatment of cancer. J. Photochem. Photobiol. 34 : 3-12
  24. Tripathy, B. C. and N. Chakraborty. 1991. 5-aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 96 : 761-767 https://doi.org/10.1104/pp.96.3.761
  25. Weinstein, J. D. and S. I. Beale. 1983. Separate physiological roles and sub-cellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis. J. Biol. Chem. 258 : 6799-6807
  26. Wettstein, D. von, S. Gough, and C.G. Kannangara. 1995. Chlorophyll biosynthesis. Plant Cell 7 : 1039-1057 https://doi.org/10.1105/tpc.7.7.1039