Morphological Characters of Panicle and Seed Mutants of Rice

  • Kang Sang-Gu (School of Biotechnology, Yeungnam University) ;
  • Pandeya Devendra (School of Biotechnology, Yeungnam University) ;
  • Kim Sung-Soo (School of Natural Resources, Yeungnam University) ;
  • Suh Hak-Soo (School of Natural Resources, Yeungnam University)
  • Published : 2006.09.01

Abstract

Phenotypes of panicle, hull and seed of mutant rice (Oryza sativa L.) were characterized. Panicle mutants were classified in 4 groups with their internode length of main rachis, primary rachis, secondary rachis and pedicel. Hull and seed mutants were grouped into 12 based on their mutant characters in shape, size and color of seeds. These natural and spontaneous mutant collections showed distinct phenotypes to wild type rice. This might be useful for the identification of the functions of genetic factors in the Mendelian inheritance.

Keywords

References

  1. Hirochika, H., E. Guiderdoni, G. An, Y. I. Hasing, M.Y. Eun, C. D. Han, N. Upadhyaya, S. Ramachandran, Q. Zhang, A. Pereira, V. Sundaresan, and H. Leung. 2004. Rice mutant resources for gene discovery. Plant Mol. Biol. 54 : 325-334 https://doi.org/10.1023/B:PLAN.0000036368.74758.66
  2. Kinoshita, T. 1993. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genet. Newsl. 10 : 7-39
  3. Komatsu, M., A. Chujo, Y. Natago, K. Shimamoto, and J. Kyozuka. 2003. Frizzy panicle is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130 : 3841-385 https://doi.org/10.1242/dev.00564
  4. Komatsu, M., M. Maekawa, K. Shimamoto, and J. Kyozuka. 2001. The LAXI and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Developmental Biology 231 : 364-373 https://doi.org/10.1006/dbio.2000.9988
  5. Komori, T., S. Ohta, N. Murai, Y. Takakura, Y. Kuraya, S. Suzuki, Y. Hiei, H. Imaseki, and N. Nitta. 2004. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J. 37(3) : 315-325 https://doi.org/10.1046/j.1365-313X.2003.01961.x
  6. Li, X., Q. Qian, Z. Fu, Y. Wang, G. Xiong, D. Zeng, X. Wang, X. Liu, S. Teng, F. Hiroshi, M.Yuan, D. Luo, B. Han, and J. Li. 2003. Control of tillering in rice. Nature 10: 422(6932) : 618-621 https://doi.org/10.1038/nature01518
  7. Mishra, R. and M.P. Janoria. 2003. Major genes controlling spikelet number per panicle in rice. In Advances in Rice Genetics, G.S. Khush, D.S. Brar and B. Hardy, eds., IRRI, pp. 63-64
  8. Nagato, Y. and A. Yoshimura. 1998. Report of committee on gene symbolization, nomenculture and linkagemap. Rice Genet. Newsl. 15 : 13-74
  9. Sasaki, A., M. Ashikari, M. Ueguchi-Tanaka, H. Itoh, A. Nishimura, D. Swapan, K. Ishiyama, T. Saito, M. Kobayashi, G.S. Khush, H. Kitano, and M. Matsuoka. 2002. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416 : 701-702 https://doi.org/10.1038/416701a
  10. Sasaki, A., H. Itoh, K. Gomi, M. Ueguchi-Tanaka, K. Ishiyama, M. Kobayashi, D. H. Jeong, G. An, H. Kitano, M. Ashikari, and M. Matsuoka. 2003. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299 : 1896-1898 https://doi.org/10.1126/science.1081077
  11. Ueguchi-Tanaka, M., M. Ashikari, M. Nakajima, H. Itoh, E. Katoh, M. Kobayashi, T.Y. Chow, Y. I. Hsing, H. Kitano, I. Yamaguchi, and M. Matsuoka. 2005. GIBBERELLIN INSENSITIVE DWARFI encodes a soluble receptor for gibberellin. Nature 29: 437(7059) : 693-698
  12. Zou, J., Z. Chen, S. Zhang, W. Zhang, G. Jiang, X. Zhao, W. Zhai, X. Pan, and L. Zhu. 2005. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 222(4) : 604-612 https://doi.org/10.1007/s00425-005-0007-0