• Title/Summary/Keyword: helical structure

Search Result 265, Processing Time 0.03 seconds

Effects of the Hinge Region of Cecropin A(1-8)-Melittin 2(1-12), a Synthetic Antimicrobial Peptide on Antibacterial, Antitumor, and Vesicle-Disrupting Activity

  • Shin, Song-Yub;Kang, Joo-Hyun;Jang, So-Yun;Kim, KiI-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.561-566
    • /
    • 1999
  • CA(1-8)-ME(1-12) [CA-ME], composed of cecropin A(1-8) and melittin(1-12), is a synthetic antimicrobial peptide having potent antibacterial and antitumor activities with minimal hemolytic activity. In order to investigate the effects of the flexible hinge sequence, Gly-Ile-Gly, of CA-ME on antibiotic activity, CA-ME and three analogues, CA-ME1, CA-ME2, and CA-ME3, were synthesized. The Gly-Ile-Gly sequence of Ca-ME was deleted in CA-ME1 and replaced with Pro and Gly-Pro-Gly in CA-ME2 and CA-ME3, respectively. CA-ME1 and CA-ME3 showed a significant decrease in antitumor activity and phospholipid vesicle-disrupting ability. However, CA-ME2 showed similar antitumor and vesicle-disrupting activities, as compared with CA-ME. These results suggest that the flexibility or ${\beta}$-turn induced by Gly-Ile-Gly or Pro in the central part of CA-ME may be important in the electrostatic interaction of the N-terminus cationic ${\alpha}$-helical region with the cell membrane surface and the hydrophobic interaction of the C-terminus amphipathic ${\alpha}$-helical region with the hydrophobic acyl chains in the cell membrane. CA-ME3 exhibited lower antitumor and vesicle-disrupting activities than CA-ME and CA-ME2. This result suggests that the excessive ${\beta}$-turn structure caused by the Gly-Pro-Gly sequence in CA-ME3 seems to interrupt ion channel/pore formation in the lipid bilayer. We concluded that the appropriate flexibility or bilayer. We concluded that the appropriate flexibility or ${\beta}$-turn structure provided by the central hinge is responsible for the effective antibiotic activity of the antimicrobial peptides with the helix-hinge-helix structure.

  • PDF

Structure and Bacterial Cell Selectivity of a Fish-Derived Antimicrobial Peptide, Pleurocidin

  • Yang Ji-Young;Shin Song-Yub;Lim Shin-Saeng;Hahm Kyung-Soo;Kim Yang-Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.880-888
    • /
    • 2006
  • Pleurocidin, an $\alpha$-helical cationic antimicrobial peptide, was isolated from skin mucosa of winter flounder (Pleuronectes americamus). It had strong antimicrobial activities against Gram-positive and Gram-negative bacteria, but had very weak hemolytic activity. The Gly$^{13,17}\rightarrow$Ala analog (pleurocidin-AA) showed similar antibacterial activities, but had dramatically increased hemolytic activity. The bacterial cell selectivity of pleurocidin was confirmed through the membrane-disrupting and membrane-binding affinities using dye leakage, tryptophan fluorescence blue shift, and tryptophan quenching experiments. However, the non-cell-selective antimicrobial peptide, pleurocidin-AA, interacts strongly with both negatively charged and zwitterionic phospholipid membranes, the latter of which are the major constituents of the outer leaflet of erythrocytes. Circular dihroism spectra showed that pleurocidin-AA has much higher contents of $\alpha$-helical conformation than pleurocidin. The tertiary structure determined by NMR spectroscopy showed that pleurocidin has a flexible. structure between the long helix from $Gly^3$ to $Gly^{17}$ and the short helix from $Gly^{17}$ to $Leu^{25}$. Cell-selective antimicrobial peptide pleurocidin interacts strongly with negatively charged phospholipid membranes, which mimic bacterial membranes. Structural flexibility between the two helices may play a key role in bacterial cell selectivity of pleurocidin.

The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures (섬유체적비 불균일 및 수지응집층이 복합재 격자 구조체 리브의 강성도 거동에 미치는 영향)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • Cylindrical composite lattice structures are manufactured by filament winding process. The fiber volume fraction non-uniformity and resin rich layers that can occur in the manufacturing process affect the stiffness and strength of the structure. Through the cross-section examination of the hoop and helical ribs, which are major elements of the composite lattice structure, we observed the fiber volume fraction non-uniformity and resin rich layers. Based on the results of the cross-section examination, the stiffness of the ribs was analyzed through the experimental and theoretical approaches. The results show that the fiber volume fraction non-uniformity and resin rich layers have an obvious influence on the rib stiffness of composite lattice structure.

Alcohol and Temperature Induced Conformational Transitions in Ervatamin B: Sequential Unfolding of Domains

  • Kundu, Suman;Sundd, Monica;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • The structural aspects of ervatamin B have been studied in different types of alcohol. This alcohol did not affect the structure or activity of ervatamin B under neutral conditions. At a low pH (3.0), different kinds of alcohol have different effects. Interestingly, at a certain concentration of non-fluorinated, aliphatic, monohydric alcohol, a conformational switch from the predominantly $\alpha$-helical to $\beta$-sheeted state is observed with a complete loss of tertiary structure and proteolytic activity. This is contrary to the observation that alcohol induces mostly the $\alpha$helical structure in proteins. The O-state of ervatamin B in 50% methanol at pH 3.0 has enhanced the stability towards GuHCl denaturation and shows a biphasic transition. This suggests the presence of two structural parts with different stabilities that unfold in steps. The thermal unfolding of ervatamin B in the O-state is also biphasic, which confirms the presence of two domains in the enzyme structure that unfold sequentially. The differential stabilization of the structural parts may also be a reflection of the differential stabilization of local conformations in methanol. Thermal unfolding of ervatamin B in the absence of alcohol is cooperative, both at neutral and low pH, and can be fitted to a two state model. However, at pH 2.0 the calorimetric profiles show two peaks, which indicates the presence of two structural domains in the enzyme with different thermal stabilities that are denatured more or less independently. With an increase in pH to 3.0 and 4.0, the shape of the DSC profiles change, and the two peaks converge to a predominant single peak. However, the ratio of van't Hoff enthalpy to calorimetric enthalpy is approximated to 2.0, indicating non-cooperativity in thermal unfolding.

Effect of Double Replacement of L-Pro, D-Pro, D-Leu or Nleu in Hydrophobic Face of Amphipathic α-Helical Model Antimicrobial Peptide on Structure, Cell Selectivity and Mechanism of Action

  • Shin, Song Yub
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3267-3274
    • /
    • 2014
  • In order to investigate the effects of the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu (the peptoid residue for Leu) in the hydrophobic face (positions 9 and 13) of amphipathic ${\alpha}$-helical non-cell-selective antimicrobial peptide $L_8K_9W_1$ on the structure, cell selectivity and mechanism of action, we synthesized a series of $L_8K_9W_1$ analogs with double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu in the hydrophobic face of $L_8K_9W_1$. In this study, we have confirmed that the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, or Nleu in the hydrophobic face of $L_8K_9W_1$ let to a great increase in the selectivity toward bacterial cells and a complete destruction of ${\alpha}$-helical structure. Interestingly, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu preferentially interacted with negatively charged phospholipids, but unlike $L_8K_9W_1$ and $L_8K_9W_1$-$\small{D}$-Leu, they did not disrupt the integrity of lipid bilayers and depolarize the bacterial cytoplasmic membrane. These results suggested that the mode of action of $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu involves the intracellular target other than the bacterial membrane. In particular, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu had powerful antimicrobial activity (MIC range, 1 to $4{\mu}M$) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Taken together, our results suggested that $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu with great cell selectivity may be promising candidates for novel therapeutic agents, complementing conventional antibiotic therapies to combat pathogenic microorganisms.

Effect of γ-Irradiation on the Molecular Properties of Bovine Serum Albumin and β-Lcatoglobulin

  • Cho, Yong-Sik;Song, Kyung-Bin
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.133-137
    • /
    • 2000
  • To elucidate the effect of oxygen radicals on the molecular properties of proteins, the secondary and tertiary structure and molecular weight size of BSA and ${\beta}$-lactoglobulin were examined after irradiation of proteins at various doses. Gamma-irradiation of protein solutions caused the disruption of the ordered structure of protein molecules as well as degradation, cross-linking, and aggregation of the polypeptide chains. As a model system, BSA and ${\beta}$-lactoglobulin were used as a typical ${\alpha}$-helical and a ${\beta}$-sheet structure protein, respectively. A circular dichroism study showed that the increase of radiation decreased the ordered structure of proteins with a concurrent increase of aperiodic structure content. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. SDS-PAGE and a gel permeation chromatography study indicated that radiation caused initial fragmentation of proteins resulting in a subsequent aggregation due to cross-linking of protein molecules.

  • PDF

Intermacromolecular Complex Formation between Helix Strilctilral Polypeptides through Hydrogen Bonding (수소 결합을 통한 Helix 폴리 펩타이드사이의 복합체 형성)

  • 조병기;김창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.18 no.1
    • /
    • pp.99-132
    • /
    • 1992
  • Polypeptide has been used broadly as an active ingredient in cosmetics We thought it is very important to investigate the adsorption behavior of polypeptide in order to pre-estimate the effect of these polypeptides. For the study of polypeptide adsorption, we have investigated complex formation of basic homopolypeptides, poly(L-proline) Form I [PLP(I)], Form II [PLP(II)] and poly(4-hydroxy-L-proline) (PHLP) with acidic homopolypeptides, poly(L-glutamic acid) (PLGA), poly(D-glutamic acid) (PDGA) and poly(L-aspartic acid) (PLAA) through hydrogen bonding in a hydroalcoholic medium with viscometer, 1ight scatter, pH meter and circular dicroism (CD). The polypeptides used in this study have helical structure in some conditions. The result exhibited that al 1 the complexes were formed as the composition of basic/acidic homopolypeptide : L:2 irrespective of the complex systems used. A more favorable complex is formed in the PLP(II)-PLGA system than PHLP-PLGA because PLP(II) has a more flexible helical conformation, whereas PHLP has a more rigid helical conformation. The right-handed helix PLGA formed the complex favorably and quickly with the left-handed helix PLP(II), whereas the left-handed helix PDGA formed the complex favorably with the right-handed helix PLP(I). The effect of side chain of the acidic homopolypeptides on the complexation was also studied. The result showed that more favorable condition for the complexation was PLGA-PLP(II) system which has longer side chain at acidic homopolypeptide than PLAA - PLP(II). All the above facts were well supported by CD measurement for the complex systems. By the CD spectra for the complexes we could deduce the conformational change of each homopolypeptide in the complexes On the basis of the above results, we performed the adsorption test of PLP(I, II) and PHLP on the hair having a left-handed helix. The adsorption amount of each polypeptide was analyzed by HPLC. The result showed that PLP(I) was adsorbed more than PLP(II), PLP(II) was adsorbed more than PHLP on the hair. On adsorbing polypeptides having a helical structure on the hair through hydrogen bonding, it could be concluded that the helical polypeptides having the opposite directional structure to the hair are adsorbed more than those having the same directional structure with the hair and also the polypeptides having a flexible conformation are adsorbed more than those having a rigid conformation.

  • PDF

Fine Structure of the Spermatogenic Cells during the Spermiogenesis of Paradoxornis webbiana (붉은머리 오목눈이 (Paradoxornis webbiana)의 정자변태 과정 중 정자형성세포의 미세구조)

  • Lee, Jung-Hun;Hahm, Kyu-Hwang
    • Applied Microscopy
    • /
    • v.31 no.3
    • /
    • pp.245-256
    • /
    • 2001
  • The morphological characteristics of spermatogenic cells during the spermiogenesis of Paradoxornis webbiana were studied by transmission electron microscope. Spermiogenesis of P. webbiana was divided into ten phase. The chromatin granules became fibrous granules at the Golgi phase, gradually condensed at the cap phases, condensed as a stick at the acrosomal phase, and finally, a perfect nucleus was formed at the maturation phase. The formation of sperm tail began at the early Golgi phase, and completed at the late maturation phase. In particular, the dense materials existed in the sperm neck, which is wedged between the tip of segmented columns and the first mitochondria of the middle piece. The axone in the neck were surrounded by the dense materials. The axonema in spermatozoon contains a 9+2 arrangement of microtubules: 9 doublets, and 2 central single microtubules. Mitochondrial bundles of middle piece were composed of a pair of arms, which surrounded the axone of the middle piece by the $15^{\circ}$ angled-helical structure. The outer membrane of mitochondria were surrounded by microtubules in plasma membrane of the sperm. The undulating membrane had a helical structure, and the sperm plasma membrane was surrounded by undulating membrane.

  • PDF

Effects of Temperature and Additives on the Thermal Stability of Glucoamylase from Aspergillus niger

  • Liu, Yang;Meng, Zhaoli;Shi, Ruilin;Zhan, Le;Hu, Wei;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • GAM-1 and GAM-2, two themostable glucoamylases from Aspergillus niger B-30, possess different molecular masses, glycosylation, and thermal stability. In the present study, the effects of additives on the thermal inactivation of GAM-1 and GAM-2 were investigated. The half-lives of GAM-1 and GAM-2 at 70℃ were 45 and 216 min, respectively. Data obtained from fluorescence spectroscopy, circular dichroism spectroscopy, UV absorption spectroscopy, and dynamic light scattering demonstrated that during the thermal inactivation progress, combined with the loss of the helical structure and a majority of the tertiary structure, tryptophan residues were partially exposed and further led to glucoamylases aggregating. The thermal stability of GAM-1 and GAM-2 was largely improved in the presence of sorbitol and trehalose. Results from spectroscopy and Native-PAGE confirmed that sorbitol and trehalose maintained the native state of glucoamylases and prevented their thermal aggregation. The loss of hydrophobic bonding and helical structure was responsible for the decrease of glucoamylase activity. Additionally, sorbitol and trehalose significantly increased the substrate affinity and catalytic efficiency of the two glucoamylases. Our results display an insight into the thermal inactivation of glucoamylases and provide an important base for industrial applications of the thermally stable glucoamylases.

Strength Analysis of Complex Gear Train for Transmission of 21-Ton Grade Wheel Excavator (21톤급 휠 굴착기용 트랜스미션의 기어 트레인에 대한 강도 해석)

  • Lee, JunHee;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.179-184
    • /
    • 2022
  • The power train of transmission for 21-ton grade wheel excavator makes use of a complex gear train composed of a planetary and helical gear system to drive the wheel excavator by transmitting power to the axle. The complex gear train with a shift mode is an important part of the transmission because of strength problems in an extreme environment. To calculate the specifications of the complex gear train and analyze the gear bending and compressive stresses of the complex gear train, this study analyzes gear bending and compressive stresses accurately for the optimal design of the complex gear train with respect to cost and reliability. In this article, the gear bending and compressive stresses of the complex gear train are calculated using the Lewes and Hertz equation. Evaluating the results with the data of the allowable bending and compressive stress from the stress and number of cycles curves of the gears verified the calculated specifications of the complex gear train. A computer structure analysis is performed with the 3D model of the planetary and helical gears to analyze the structure strength of the complex gear train. The results demonstrate that the durability and strength of the complex gear train are safe, because the safety factors of the bending and compressive stresses are more than 1.0.