DOI QR코드

DOI QR Code

Effect of Double Replacement of L-Pro, D-Pro, D-Leu or Nleu in Hydrophobic Face of Amphipathic α-Helical Model Antimicrobial Peptide on Structure, Cell Selectivity and Mechanism of Action

  • Shin, Song Yub (Department of Cellular & Molecular Medicine, School of Medicine, Chosun University)
  • Received : 2014.07.05
  • Accepted : 2014.07.26
  • Published : 2014.11.20

Abstract

In order to investigate the effects of the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu (the peptoid residue for Leu) in the hydrophobic face (positions 9 and 13) of amphipathic ${\alpha}$-helical non-cell-selective antimicrobial peptide $L_8K_9W_1$ on the structure, cell selectivity and mechanism of action, we synthesized a series of $L_8K_9W_1$ analogs with double replacement of $\small{L}$-Pro, $\small{D}$-Pro, $\small{D}$-Leu or Nleu in the hydrophobic face of $L_8K_9W_1$. In this study, we have confirmed that the double replacement of $\small{L}$-Pro, $\small{D}$-Pro, or Nleu in the hydrophobic face of $L_8K_9W_1$ let to a great increase in the selectivity toward bacterial cells and a complete destruction of ${\alpha}$-helical structure. Interestingly, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu preferentially interacted with negatively charged phospholipids, but unlike $L_8K_9W_1$ and $L_8K_9W_1$-$\small{D}$-Leu, they did not disrupt the integrity of lipid bilayers and depolarize the bacterial cytoplasmic membrane. These results suggested that the mode of action of $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu involves the intracellular target other than the bacterial membrane. In particular, $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu had powerful antimicrobial activity (MIC range, 1 to $4{\mu}M$) against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Taken together, our results suggested that $L_8K_9W_1$-$\small{L}$-Pro, $L_8K_9W_1$-$\small{D}$-Pro and $L_8K_9W_1$-Nleu with great cell selectivity may be promising candidates for novel therapeutic agents, complementing conventional antibiotic therapies to combat pathogenic microorganisms.

Keywords

References

  1. Zasloff, M. Nature 2002, 415, 389. https://doi.org/10.1038/415389a
  2. Hancock, R. E.; Scott, M. G. Proc. Natl. Acad. Sci. USA 2000, 97, 8856. https://doi.org/10.1073/pnas.97.16.8856
  3. Hancock, R. E.; Diamond, G. Trends Microbiol. 2000, 8, 402. https://doi.org/10.1016/S0966-842X(00)01823-0
  4. Andreu, D.; Merrifield, R. B.; Steiner, H.; Boman, H. G. Biochemistry 1985, 24, 1683. https://doi.org/10.1021/bi00328a017
  5. Maloy, W. L.; Kari, U. P. Biopolymers 1995, 37, 105. https://doi.org/10.1002/bip.360370206
  6. Blondelle, S. E.; Simpkins, L. R.; Perez-Paya, E.; Houghten, R. A. Biochim. Biophys. Acta 1993, 1202, 331. https://doi.org/10.1016/0167-4838(93)90024-L
  7. Thennarasu, S.; Nagaraj, R. Protein Eng. 1996, 9, 1219. https://doi.org/10.1093/protein/9.12.1219
  8. Shai, Y. Biopolymers 2002, 66, 236. https://doi.org/10.1002/bip.10260
  9. Papo, N.; Shai, Y. Peptides 2003, 24, 1693. https://doi.org/10.1016/j.peptides.2003.09.013
  10. Kang, S. J.; Won, H. S.; Choi, W. S.; Lee, B. J. J. Pept. Sci. 2009, 15, 583. https://doi.org/10.1002/psc.1149
  11. Fernandez, D. I.; Sani, M. A.; Gehman, J. D.; Hahm, K. S.; Separovic, F. Eur. Biophys. J. 2011, 40, 471. https://doi.org/10.1007/s00249-010-0660-5
  12. Wang, P.; Nan, Y. H.; Yang, S. T.; Kang, S. W.; Kim, Y.; Park, I. S.; Hahm, K. S.; Shin, S. Y. Peptides 2010, 31, 1251. https://doi.org/10.1016/j.peptides.2010.03.032
  13. Epand, R. F.; Lehrer, R. I.; Waring, A.; Wang, W.; Maget-Dana, R.; Lelievre, D.; Epand, R. M. Biopolymers 2003, 71, 2. https://doi.org/10.1002/bip.10372
  14. Dathe, M.; Meyer, J.; Beyermann, M.; Maul, B.; Hoischen, C.; Bienert, M. Biochim. Biophys. Acta 2002, 1558, 171. https://doi.org/10.1016/S0005-2736(01)00429-1
  15. Agawa,Y.; Lee, S.; Ono, S.; Aoyagi, H.; Ohno, M.; Taniguchi, T.; Anzai, K.; Kirino, Y. J. Biol. Chem. 1991, 266, 20218.
  16. Kiyota, T.; Lee, S.; Sugihara, G. Biochemistry 1996, 35, 13196. https://doi.org/10.1021/bi961289t
  17. Beven, L.; Castano, S.; Dufourcq, J.; Wieslander, A.; Wroblewski, H. Eur. J. Biochem. 2003, 270, 2207. https://doi.org/10.1046/j.1432-1033.2003.03587.x
  18. Yin, L. M.; Edwards, M. A.; Li, J.; Yip, C. M.; Deber, C. M. J. Biol. Chem. 2012, 287, 7738. https://doi.org/10.1074/jbc.M111.303602
  19. Wang, P.; Nan, Y. H.; Shin, S. Y. J. Pept. Sci. 2010, 16, 601. https://doi.org/10.1002/psc.1268
  20. Song, Y. M.; Yang, S. T.; Lim, S. S.; Kim, Y.; Hahm, K. S.; Kim, J. I.; Shin, S. Y. Biochem. Biophys. Res. Commun. 2004, 314, 615. https://doi.org/10.1016/j.bbrc.2003.12.142
  21. Lee, K. H.; Lee, D. G.; Park, Y.; Kang, D. I.; Shin, S. Y.; Hahm, K. S.; Kim, Y. Biochem. J. 2006, 394, 105. https://doi.org/10.1042/BJ20051574
  22. Friedrich, C. L.; Moyles, D.; Beveridge, T. J.; Hancock, R. E. Antimicrob. Agents Chemother. 2000, 44, 2086. https://doi.org/10.1128/AAC.44.8.2086-2092.2000
  23. Friedrich, C. L.; Rozek, A.; Patrzykat, A.; Hancock, R. E. J. Biol. Chem. 2001, 276, 24015. https://doi.org/10.1074/jbc.M009691200
  24. Chen, Y.; Mant, C. T.; Farmer, S. W.; Hancock, R. E.; Vasil, M. L.; Hodges, R. S. J. Biol. Chem. 2005, 280, 12316. https://doi.org/10.1074/jbc.M413406200
  25. Fazio, M. A.; Jouvensal, L.; Vovelle, F.; Bulet, P.; Miranda, M. T.; Daffre, S.; Miranda, A. Biopolymers 2007, 88, 386. https://doi.org/10.1002/bip.20660
  26. Nan, Y. H.; Bang, J. K.; Jacob, B.; Park, I. S.; Shin, S. Y. Peptides 2012, 35, 239. https://doi.org/10.1016/j.peptides.2012.04.004

Cited by

  1. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs vol.22, pp.9, 2017, https://doi.org/10.3390/molecules22091430
  2. Studies on acid stability and solid-phase block synthesis of peptide–peptoid hybrids: ligands for formyl peptide receptors pp.1438-2199, 2019, https://doi.org/10.1007/s00726-018-2656-x
  3. Antimicrobial Activity of α-Peptide/β-Peptoid Lysine-Based Peptidomimetics Against Colistin-Resistant Pseudomonas aeruginosa Isolated From Cystic Fibrosis Patients vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00275