DOI QR코드

DOI QR Code

Alcohol and Temperature Induced Conformational Transitions in Ervatamin B: Sequential Unfolding of Domains

  • Kundu, Suman (Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University) ;
  • Sundd, Monica (Department of Biochemistry, University of Iowa) ;
  • Jagannadham, Medicherla V. (Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University)
  • Published : 2002.03.31

Abstract

The structural aspects of ervatamin B have been studied in different types of alcohol. This alcohol did not affect the structure or activity of ervatamin B under neutral conditions. At a low pH (3.0), different kinds of alcohol have different effects. Interestingly, at a certain concentration of non-fluorinated, aliphatic, monohydric alcohol, a conformational switch from the predominantly $\alpha$-helical to $\beta$-sheeted state is observed with a complete loss of tertiary structure and proteolytic activity. This is contrary to the observation that alcohol induces mostly the $\alpha$helical structure in proteins. The O-state of ervatamin B in 50% methanol at pH 3.0 has enhanced the stability towards GuHCl denaturation and shows a biphasic transition. This suggests the presence of two structural parts with different stabilities that unfold in steps. The thermal unfolding of ervatamin B in the O-state is also biphasic, which confirms the presence of two domains in the enzyme structure that unfold sequentially. The differential stabilization of the structural parts may also be a reflection of the differential stabilization of local conformations in methanol. Thermal unfolding of ervatamin B in the absence of alcohol is cooperative, both at neutral and low pH, and can be fitted to a two state model. However, at pH 2.0 the calorimetric profiles show two peaks, which indicates the presence of two structural domains in the enzyme with different thermal stabilities that are denatured more or less independently. With an increase in pH to 3.0 and 4.0, the shape of the DSC profiles change, and the two peaks converge to a predominant single peak. However, the ratio of van't Hoff enthalpy to calorimetric enthalpy is approximated to 2.0, indicating non-cooperativity in thermal unfolding.

Keywords

References

  1. Alexandrescu, A. T., Ng, Y. L. and Dobson, C. M. (1994) Characterization of a trifluoroethanol-induced partially folded state of alpha-lactalbumin. J. Mol. BioI. 235, 587-599. https://doi.org/10.1006/jmbi.1994.1015
  2. Ayed, A. and Duckworth, H. W. (1999) A stable intermediate in the equilibrium unfolding of E. coli citrate synthase. Protein Sci. 8, 1116-1126. https://doi.org/10.1110/ps.8.5.1116
  3. Barker, S. and Mayo, K. H. (1991) Trifluoroethanol drives platelet factor 4 subunit association rate toward the Smoluchowski-Stokes- Einstein dynamic diffusion limit. J. Am. Chem. Soc. 113, 8201-8203.
  4. Bhattacharjya, S. and Balaram, P. (1997) Hexafluoroacetone hydrate as a structure modifier in proteins: Characterization of a molten globule state of hen egg-white lysozymes. Protein Sci. 6, 1065-1073. https://doi.org/10.1002/pro.5560060513
  5. Binachi, E., Rampone, R., Tealdi, A. and Ciferri, A. (1970) The role of aliphatic alcohol on the stability of collagen and tropocollegen. J. BioI. Chem. 245, 3341-3345.
  6. Brandts, J. F., Hu, C. Q., Lin, L. N. and Mos, M. T. (1989) A simple model for proteins with interacting domains. Application to scanning calorimetry data. Biochemistry 28, 8588-8596. https://doi.org/10.1021/bi00447a048
  7. Brewer, J. M. (1999) The use of differential scanning calorimetry (DSC) to determine the correctness of folding of cloned protein. Biotechnol. Appl. Biochem 30, 173-175.
  8. Bychkova, V. E., Dujsekina, A. E., Klenin, S. L., Tiktopulo, E. I., Uversky, V. N. and Ptitsyn, O. B. (1996) Molten globule-like state of cytochrome c under conditions simulating those near the membrane surface. Biochemistry 35, 6058-6063. https://doi.org/10.1021/bi9522460
  9. Chi, Z. and Asher, S. A. (1999). Ultraviolet resonance Raman examination of horse apomyoglobin acid unfolding intermediates. Biochemistry 38, 8196-8203. https://doi.org/10.1021/bi982654e
  10. Chiti, F., Taddei, N., van Nuland, N. A. J., Magherini, F., Stefani, M., Ramponi, G. and Dobson, C. M. (1998) Structural characterization of the transition state for folding of muscle acylphosphatase. J. Mol. BioI. 283, 893-903.
  11. Chopra, R. K., Mukkarnala, P. L. and Ananthanarayanan, V. S. (1983) Structural studies on prolyl hydroxylase. Conformation from circular dichroism spectroscopy. Biochem. Int. 7, 415-421.
  12. Cort, J. R. and Anderson, N. H. (1997) Formation of a moltenglobule like state of myoglobin in aqueous hexafluoro2-propanol. Biochem. Biophys. Res. Commun. 233, 687-691. https://doi.org/10.1006/bbrc.1997.6524
  13. Edwin, F. and Jagannadham, M. V. (1998). Sequential unfolding of papain in molten globule state. Biochem. Biophys. Res. Comm. 252, 654-660. https://doi.org/10.1006/bbrc.1998.9720
  14. Fan, P., Bracken, C. and Baum, J. (1993) Structural characterization of monellin in the alcohol-denatured state by NMR: evidence for $\beta$-sheet to $\alpha$-helix conversions. Biochemistry 32, 1573-1582. https://doi.org/10.1021/bi00057a023
  15. Fink, A. L. and Painter, B. (1987) Characterization of the unfolding of ribonuclease A in aqueous methanol solvents. Biochemistry 26, 1665-1671. https://doi.org/10.1021/bi00380a027
  16. Gast, K., Zirver, D., Muller-Frohne, M. and Damaschun, G. (1999) Trifluorocthanol induced conformational transitions of proteins: Insights gained from the differences between ${\alpha}$ lactalbumin and ribonuclease. Protein Sci. 8, 625-634. https://doi.org/10.1110/ps.8.3.625
  17. Hamada, D., Segawa, S-. I. and Goto, Y. (1996) Non-native ${\alpha}$-helical intermediate in the refolding of $\beta$-lactoglobulin, a predominantly $\beta$-sheet protein. Nature Struct. BioI. 3, 868-873. https://doi.org/10.1038/nsb1096-868
  18. Harding, M. M., Williams, D. H. and Woolfson, D. N. (1991) Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry 30, 3120-3128. https://doi.org/10.1021/bi00226a020
  19. Herskovits, T. T., Gadegbeku, B. and Jaillet, H. (1970) On the structural stability and solvent denaturation of proteins. I. Denaturation by alcohol and glycols. J. Biol. Chem. 245, 2588- 2598.
  20. Jackson, M. and Mantsch, H. H. (1992) Halogenated alcohols as solvents for proteins: FfIR spectroscopic studies. Biochim. Biophys. Acta 1118, 139-143. https://doi.org/10.1016/0167-4838(92)90141-Y
  21. Jayaraman, G., Kumar, T. K., Arunkumar, A. I. and Yu, C. (1996) 2,2,2-Trifluoroethanol induces helical conformation in an all $\beta$-sheet protein. Biochem Biophys. Res. Commun. 222, 33-37. https://doi.org/10.1006/bbrc.1996.0693
  22. Kumaran S. and Roy, R. P. (1999) Helix-enhancing propensity of fluoro and alkyl alcohols: influence of pH, temperature and cosolvent concentration on the helical conformation of peptides. J. Peptide Res. 53, 284-293. https://doi.org/10.1034/j.1399-3011.1999.00027.x
  23. Kundu, S., Sundd, M. and Jagannadham, M. V. (1999) Structural characterization of a highly stable cysteine protease ervatamin C. Biochem. Biophys. Res. Commun. 264, 635-642. https://doi.org/10.1006/bbrc.1999.1550
  24. Kundu, S., Sundd, M. and Jagannadham, M. V. (2000) Purification and characterization of a cysteine protease ervatamin B, with two disulfide bridges, from the latex of ervatamia coronaria. J. Agric. Food Chem. 48, 171-179. https://doi.org/10.1021/jf990661j
  25. Kuwajima, K. (1989) The molten globule state as a clue for understanding the folding an cooperativity of globular-protein structure. Proteins: Struct. Funct. Genet. 6, 87-103. https://doi.org/10.1002/prot.340060202
  26. Kuwajima, K., Yamaya, H. and Sugai, S. (1996) The burst phase intermediate in the refolding of ${\beta}$-lactoglobulin studied by stopped flow circular dichroism and absorption spectroscopy. J. Mol. BioI. 264, 806-822. https://doi.org/10.1006/jmbi.1996.0678
  27. Lehrman, S. R., Tuls, J. L. and Lund, M. (1990) Peptide ahelicity in aqueous trifluoroethanol: Correlation with predicted helicity and the secondary structure of the corresponding regions of bovine growth hormone. Biochemistry 29, 5590-5596. https://doi.org/10.1021/bi00475a025
  28. Liu, Z. P., Rizo, J. and Gierasch, L. M. (1994) Equilibrium binding studies of cellular retinoic acid binding protein, a predominantly ${\beta}$-sheet protein. Biochemistry 33, 134-142. https://doi.org/10.1021/bi00167a017
  29. Logan, T. M., Theriult, Y. and Ferik, S. W. (1994) Structural characterization of the FK506 binding protein unfolded in urea and guanidine hydrochloride. J. Mol. Biol. 236, 637-648. https://doi.org/10.1006/jmbi.1994.1173
  30. Mendieta, J., Folque, H. and Taules, R. (1999) Tho-phase induction of the nonnative ${\alpha}$-helical form of ${\beta}$-lactoglobulin in the presence of trifluoroethenol. Biophys. J. 76, 451-457. https://doi.org/10.1016/S0006-3495(99)77212-7
  31. Nakano, T. and Fink, A. L. (1990) The folding of staphylococcal nuclease in the presence of methanol or guanidine thiocyanate. J. Biol. Chem. 265, 12356-12362.
  32. Nelson, J. W. and Kallenbach, N. R. (1986) Stabilization of the ribonuclease S-peptide alpha helix by trifluoroethanol solution. Biochemistry 28, 5256-5261. https://doi.org/10.1021/bi00438a050
  33. Ptitsyn, O. B. (1987) Protein folding. Hypothesis and experiments. J. Protein. Chem. 6, 273-293.
  34. Radford, S. E., Dobson, C. M. and Evans, P. A. (1992) The folding of hen lysozyme involves partially structured intennediates and multiple pathways. Nature 358, 302-307. https://doi.org/10.1038/358302a0
  35. Ranjan, R. and Balaram, P. (1996) A model for the interaction of trifluoroethanol with peptides and proteins. Int. J. Peptide Protein Res . 48, 328-336. https://doi.org/10.1111/j.1399-3011.1996.tb00849.x
  36. Schonbrunner, N., Wey, J., Engels, J., Georg, H. and Kiefhaber, T. (1996) Native-like ${\beta}$-structure in a trifluoroethanol-induced partially folded state of the all--${\beta}$-sheet protein tendamistat. J. Mol. Biol. 260, 432-445. https://doi.org/10.1006/jmbi.1996.0412
  37. Timasheff, S. N. (1970) Protein-solvent interactions and protein Conformation. Acc. Chem. Res. 3, 62-68. https://doi.org/10.1021/ar50026a004
  38. Uversky, V. N. and Ptitsyn, O. B. (1994) "Partly folded" state, a new equilibrium state of protein molecules: four-state guanidimium chloride-induced unfolding of ${\beta}$-lactamase at low temperature. Biochemistry 33, 2782-2791. https://doi.org/10.1021/bi00176a006
  39. Vanderheeren, G. and Hanssens, I. (1994) Thermal unfolding of bovine ${\alpha}$-lactalbumin: comparison of circular dichroism with hydrophobicity measurements. J. BioI. Chem 269, 7090-7094.
  40. Wang, C., Lascu, I. and Giartosia, A. (1998) Bovine serum fetuin is unfolded through a molten globule state. Biochemistry 37, 8457-8464. https://doi.org/10.1021/bi9723010
  41. Waterhous, D. V. and Johnson, W. C. Jr. (1994) Importance of environment in detennining secondary structure in proteins. Biochemistry 33, 2121-2128. https://doi.org/10.1021/bi00174a019
  42. Wilkinson, K. D. and Mayer, A. N. (1986) Alcohol-induced conformational changes of ubiquitin. Arch. Biochem. Biophys. 250, 390-399. https://doi.org/10.1016/0003-9861(86)90741-1
  43. Yang, Y. and Mayo, K. H. (1993) Alcohol-induced protein folding transitions in platelet factor 4; the O-state. Biochemistry 32, 8661-8671. https://doi.org/10.1021/bi00084a038

Cited by

  1. SDS induced molten globule state of heynein; a new thiol protease: Evidence of domains and their sequential unfolding vol.82, pp.2, 2011, https://doi.org/10.1016/j.colsurfb.2010.10.028
  2. Effect of alcohols on binding of camphor to cytochrome P450cam: Spectroscopic and stopped flow transient kinetic studies vol.455, pp.2, 2006, https://doi.org/10.1016/j.abb.2006.09.007
  3. 2,2,2-Trifluroethanol induces simultaneous increase in α-helicity and aggregation in alkaline unfolded state of bovine serum albumin vol.46, pp.2, 2010, https://doi.org/10.1016/j.ijbiomac.2009.12.013
  4. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: Liposomes fusion and/or lysis investigated by fluorescence and atomic force microscopy vol.151, pp.3, 2008, https://doi.org/10.1016/j.cbpa.2007.02.031
  5. Methyl cyanide induces α to β transition and aggregation at high concentrations in E-state of human serum albumin vol.75, pp.3, 2010, https://doi.org/10.1134/S0006297910030132
  6. Effect of aqueous ethanol on the triple helical structure of collagen vol.43, pp.12, 2014, https://doi.org/10.1007/s00249-014-0994-5