• Title/Summary/Keyword: helical layer

Search Result 41, Processing Time 0.026 seconds

The Effect of the Making Methods of Hollow Fiber Active Layer on Performance for Nanofiltration Helical Module (Nanofiltration Helical Module에서 Hollow Fiber Active Layer의 성형법에 따른 성능변화에 관한 연구)

  • ;Belfort, Georges
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.95-109
    • /
    • 1997
  • The effects of varing axial flow rate and solute concentration on the performance of both module sets made by different methods for active layer formation were compared and determined. All experiments were conducted simultaneously at the same transmembrane pressure and energy consumption per membrane area. In every comparative run between the presence of Dean vortices in a helical module and absence of such vortices in a linear module from the first module set, the solution fluxes and permeabilities were higher, and in some cases substantially higher for the vortex flow. With pure water, the permeabilities of both modules from the second module set were different and the flux in a linear module was 150% higher than in the helical module. This explained both module membranes were totally different.

  • PDF

The Effects of Affecting Ratios on the Strength Safety of a Composite Fuel Tank for FEV Vehicles (FEV 자동차용 복합소재 연료탱크의 강도안전성에 미치는 기여율에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • The purpose of this paper is to analyze affecting ratios of strength safety in carbon fiber layer thickness of a composite fuel tank for FEV vehicles. To investigate affecting ratios by FEM modeling, the equivalent von Mises stress has been computed on the aluminum liner and carbon fiber layers of composite fuel tanks in hoop and helical directions respectively. According to the FEM results, the affecting ratios of an aluminum liner on the equivalent stress are 77.5% in hoop direction, 18.11% in $70^{\circ}C$ winded helical direction and 4.39% in $12^{\circ}C$ winded helical direction. These trends on the strength safety of carbon fiber layers have been shown as those of an aluminum liner even though the layer thickness ratio of $12^{\circ}C$ inclined carbon fiber is very high of 42% compared with that of hoop layer thickness. Thus, the computed results show that the strength safety of a carbon fiber fuel tank is more influenced by the winding angle rather than the fiber thickness of carbon fiber layers.

Development of Design Program for Composite Pressure Vessel Type-4 (복합재료 압려용기 Type-4 설계 프로그램 개발)

  • Lee Ho Yong;Joe Chee Ryong
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.224-227
    • /
    • 2004
  • A computer program for composite pressure vtlssel design is developed. In-puts are : material-property(young's modulus, shear modulus, tensile strength, poisson's ratio, density), operating pressure, burst pressure, liner thickness, boss diameter, boss weight and number of helical angles. Out-puts are; thickness of each layer, weight of the vessel, dimension of the vessel, inner volume, dome-shape and helical winding angle. Also filament winding angles can be selected various kinds of utilizing virtual boss diameter.

  • PDF

Design of Fast Acting Fuse Characteristics Using a Precision Multi-layer Thin Film Plating (정밀 다층 박막 도금을 이용한 빠른 동작 퓨즈 특성 설계)

  • Kim, Eun-Min;Kang, Chang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.445-451
    • /
    • 2016
  • General fuse elements of solution for fast acting operation characteristics made using silver or silver alloy, those are not able to dominate cost competition to the advanced global leaders that have not only high technology but competitive price. In this study, the method that compose the fuse elements manufactured solution of fast acting operation characteristics by using precision multi-layer thin film plating and helical cutting process from low-priced copper metal. Furthermore, in order to move rated current line of fuse due to the heat loses, the manufacture construction method of fixed resistor is introduced, and then Ni-P plating layer and Sn plating layer are introduced multiply for controling fine opening time characteristics. So this study can establish the high productive and low-priced production method.

Studies on the Helical Structures of Taxus cuspidata S. et Z. and Larix gmelinii var. principis-ruprechtii Pilger (주목과 잎갈나무의 나선장(螺旋狀) 구조(構造)에 관한 연구(硏究))

  • Lee, Phil-Woo;Jung, Hee-Suk;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.79-89
    • /
    • 1987
  • This study was executed to examine helical structure and other feature, of Taxus cuspidata S. et Z. and Larix gmelinii var. principis-ruprechtii Pilger through photomicroscopic and scanning electron microscopic observation, and the obtained result, were summarized as follows: 1. Tracheid transition from springwood to summerwood was abrupt, mel slightly gradual in Taxus cuspidata S. et Z. and summerwood width of Larix gmelinii var. principis-ruprechtii Pilger was wider than that of Taxus cuspidata S. et Z. 2. Normal vertical and horizontal resin canals and surrounding thick epithelial cells were present in Larix gmelinii var. principis-ruprechtii Pilger but not present in Taxus cuspidata S. et Z. 3. Instead of helical thickening, helical chicks were observed only in summerwood trachieds of Larix gmelinii var. principis-ruprechtii Pilger. However, helical thickenings forming S, Z., and horizontal helix perpendicular to long axis of tracheid were observed in springood and summerwood tracheids of Taxus cuspidata S. et Z. and these helical thickenings were considered as analogous to the innermost layer of secondary wall. 4. Uniseriate and fusiform rays were appeared on tangential surface of Larix gmelinii var. principis-ruprechtii Pilger but oly uniserate ray was observed on tangential surface ot Taxus cuspidata S. et Z. The fusiform rays of Larix gmelinii var. principis-ruprechtii Pilger usually contained one horizontal resin canal bot occasionally two horizontal resin canals were contained in a fusiform ray. 5. Trabeculae and crassulae were observed in the tracheids of Larix gmelimii var. principis-ruprechtii Pilger but not observed in the tracheids of Taxus cuspidata S. et Z.

  • PDF

Experimental and numerical investigation of RC sandwich panels with helical springs under free air blast loads

  • Rashad, Mohamed;Wahab, Mostafa M.A.;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.217-230
    • /
    • 2019
  • One of the most important design criteria in underground structure is to design lightweight protective layers to resist significant blast loads. Sandwich blast resistant panels are commonly used to protect underground structures. The front face of the sandwich panel is designed to resist the blast load and the core is designed to mitigate the blast energy from reaching the back panel. The design is to allow the sandwich panel to be repaired efficiently. Hence, the underground structure can be used under repeated blast loads. In this study, a novel sandwich panel, named RC panel - Helical springs- RC panel (RHR) sandwich panel, which consists of normal strength reinforced concrete (RC) panels at the front and the back and steel compression helical springs in the middle, is proposed. In this study, a detailed 3D nonlinear numerical analysis is proposed using the nonlinear finite element software, AUTODYN. The accuracy of the blast load and RHR Sandwich panel modelling are validated using available experimental results. The results show that the proposed finite element model can be used efficiently and effectively to simulate the nonlinear dynamic behaviour of the newly proposed RHR sandwich panels under different ranges of free air blast loads. Detailed parameter study is then conducted using the validated finite element model. The results show that the newly proposed RHR sandwich panel can be used as a reliable and effective lightweight protective layer for underground structures.

LAMINAR FLOW IN THE ENTRANCE REGION OF HELICAL TUBES FOR UNIFORM INLET VELOCITY CONDITIONS (균일입구유속 조건의 나선관 입구영역의 층류 유동)

  • Kim, Y.I.;Park, J.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • A numerical study for laminar flow in the entrance region of helical tubes for uniform inlet velocity conditions is carried out by means of the finite volume method to investigate the effects of Reynolds number, pitch and curvature ratio on the flow development. This results cover a curvature ratio range of 1/10$\sim$1/320, a pitch range of 0.0$\sim$3.2, and a Reynolds number range of 125$\sim$2000. It has been found that the curvature ratio does significantly effect on the angle of flow development, but the pitch and Reynolds number do not. The characteristic angle $\phi_c(=\phi/\sqrt{\delta})$, or the non-dimensional length $\overline{l}(=l\sqrt{\delta}cos(atan\lambda)/d)$ can be used to represent the flow development for uniform inlet velocity conditions. In uniform inlet velocity conditions, the growth of boundary layer delays the flow development attributed to centrifugal force, and in which conditions the amplitude of flow oscillations is smaller than that in parabolic inlet velocity conditions. If the pitch increases or if the curvature ratio or Reynolds number decreases, the minimum friction factor and the fully developed average friction factor normalized with the friction factor of a straight tube and the flow oscillations decrease.

Numerical Calculation of Turbulent Boundary Layer on Rotating Helical Blades (회전(回轉)하는 나선(螺旋)날개 위에서의 경계층(境界層) 해석(解析))

  • Keon-Je,Oh;Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.9-17
    • /
    • 1984
  • Laminar and turbulent boundary layers on a rotating sector and a helical blade are calculated by differential method. The estimation of three dimensional viscous flows provide quite useful informations for the design of propellers and turbo-machinery. A general method of calculation is presented in this paper. Calculated laminar boundary layer on a sector shows smooth development of flows from Blasius' solution at the leading edge to von Karman's solution of a rotating disk at the down-stream. Eddy viscosity model is adopted for the calculation of turbulent flows. Turbulent flows on a rotating blade show similar characters as laminar flows. But cross-flow angle of turbulent flows are reduced in comparison with laminar boundary layers. Effects of rotation make flow structures significantly different from two-dimensional flows. In the range of Reynolds number of model scale propellers, large portion of the blade are still in the transition region from laminar to turbulent flows. Therefore viscous flow pattern might be quite different on the blade of model propeller. The present method of calculation is to be useful for the research of scale effects, cavitation, and roughness effects of propeller blades.

  • PDF

Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition

  • Park, Yong-Jun;Sobahan, KM Abdus;Kim, Jin-Joo;HwangBo, Chang-Kwon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.218-222
    • /
    • 2009
  • In this paper, we report the optical and structural properties of a bilayer circular filter fabricated by a glancing angle deposition technique. The bilayer circular filter is realized by a two-layer $TiO_2$ helical film with layers of opposite structural handedness. It is found that the bilayer circular filter reflects both right and left circularly polarized light with wavelength lying in the Bragg regime. The microstructure of the bilayer circular filter is also investigated using a scanning electron microscope.

Self-assembly of Helical structure by defected nanosheet

  • Yoon, Sang-hee;Sim, Eunji
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.75-79
    • /
    • 2016
  • A helical nanosturctrue can be obtained by self-assembly method. Utilizing DPD simulation coarse-grained model, we patterned 2D layer nanosheets with repeated diagonal defects and grafts, and programed to self-roll into hollow helix structure. The defected pattern side caused anisotropy, and formed helix or helix-like structure. This opens the possibility to control the helix pitch or cavity radius. In this work, we designed several patterns about diagonal defect with a variety of defect side densities and defect widths and then simulation was carried out. Thus, our results have that parameters are affecting self-assembly of nanosheets and their conformation.

  • PDF