• Title/Summary/Keyword: heat-damage

Search Result 981, Processing Time 0.03 seconds

Study on Laser irradiation characteristics for Oxide TFTs on Flexible Substrate (산화물 반도체 Flexible Display 소자 제작을 위한 Laser 가공 특성 연구)

  • Son, Hyeok;Lee, Gong-Su;Jeong, Han-Uk;Kim, Gwang-Yeol;Choe, Yeong-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.203-203
    • /
    • 2009
  • Low temperature annealing for oxide TFTs including IGZO on PI substrate is the essential process to fabricate flexible display devices, since low heat-resistance on PI and PEN substrates limits the temperature range. Laser annealing is one of the promising candidates for low temperature process, and it has been used for various application in semiconductor and LCD fabrication. We irradiated laser to solution-based IGZO thin films on PI substrate were irradiated to laser beam, and investigated laser damage of PI layer. Based on transmittance analysis, wavelength(532nm) and scan speed(1000mm/s) is the optimized condition for laser irradiation about ink-Jet printed oxide TFTs on PI substrates.

  • PDF

Design and Test of ASME Strainer for Coolant System of Research Reactor (연구용 원자로 냉각계통의 ASME 스트레이너 설계 및 성능시험)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.24-29
    • /
    • 1999
  • The ASME strainers have been newly installed at the suction side of each reactor coolant pump to get rid of the foreign materials which may damage the pump impeller or interfere with the coolant path of fuel flow tube or primary plate type heat exchanger. The strainer was designed in accordance with ASME SEC. III, DIV. 1, Class 3 and the structural integrity was verified by seismic analysis. The screen was designed in accordance with the effective void area from the result of flow analysis for T-type strainer. After installation of the strainer, it was confirmed through the field test that the flow characteristics of primary cooling system were not adversely affected. The pressure loss coefficient was calculated by Darcy equation using the pressure difference through each strainer and the flow rate measured during the strainer performance test. And these are useful data to predict flow variations by the pressure difference.

  • PDF

Modified technique to fabricate a hollow light-weight facial prosthesis for lateral midfacial defect: a clinical report

  • Patil, Pravinkumar G.
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.3
    • /
    • pp.65-70
    • /
    • 2010
  • Large oro-facial defects result from cancer treatment consequences in serious functional as well as cosmetic deformities. Acceptable cosmetic results usually can be obtained with a facial prosthesis. However, retention of a large facial prosthesis can be challenging because of its size and weight. This article describes prosthetic rehabilitation of a 57-year-old man having a right lateral mid-facial defect with intraoral-extraoral combination prosthesis. A modified technique to fabricate a hollow substructure in heat-polymerizing polymethyl-methacrylate to support silicone facial prosthesis was illustrated. The resultant facial prosthesis was structurally durable and light in weight facilitating the retention with magnets satisfactorily. This technique is advantageous as there is no need to fabricate the whole prosthesis again in case of damage of the silicone layer because the outer silicone layer can be removed and re-packed on the substructure if the gypsum-mold is preserved.

A study on the micro hole machining of Al2O3 ceramics ($Al_2O_3$ 세라믹의 미세구멍 가공에 관한 연구)

  • 윤혁중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.37-42
    • /
    • 1997
  • This paper describes result of experiment of parameters affecting the micro hole drilling time, kind of assisting gas and it's pressure. The result reveals that parameter value of 0.08J, 20Hz, dwell time of 300 microseconds can be a good machining condition to make micro hole diameter range of 50-70${\mu}{\textrm}{m}$, Assistant gas such air, O2, Ar, N2 was adapted. Assistant gas of air makes heat affected zone enlarge due to burning of material, also it makes hole irregular and damage because of refusion stick to caused by chemical reaction with Al2O3 ceramic material. O2(99.9%) has good characteristic to get good drilling and smooth surface on pressure of 0.2kgf/$\textrm{cm}^2$, but it is expensive. Ar, N2 makes material burn and crack severely and proved to be an appropriate but, Ar was better than N2.

  • PDF

Dynamic Responses of the TRU-loaded HYPER System

  • Kim, T.K.;Oh, Se-Kee;Kim, Y.H.;Park, W.S.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.127-137
    • /
    • 2000
  • Accelerator Driven System (ADS) named HYPER(Hybrid Power Extraction Reactor) is being developed for the transmutation of nuclear waste in Korea Atomic Energy Research Institute(KAERI). The concept of the HYPER is using 1GeV proton to drive a subcritical core. HYPER system is believed to have much more stable dynamics than the critical system in terms of neutronics. However, the HYPER system is supposed to have some drawbacks for the cooling system accidents. Loss of Flow(LOF) and Loss of Heat Sink (LOHS) cause a strong damage. As results, those accidents would stop the power production in the critical system. On the other hand, the negative reactivity feedback could not stop the HYPER system because the HYPER is driven by an accelerator rather than reactivity.(omitted)

  • PDF

ATWS Performance of KALIMER Uranium Metal Core

  • Dohee Hahn;Kim, Young C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.592-597
    • /
    • 1996
  • The KALIMER core, of which nuclear design is largely governed by inherent safety and reactivity control issues, is fueled with metallic fuel, and the initial core will be loaded with 20% enriched Uranium metal fuel. KALIMER safety design objectives include the accommodation of unprotected, ATWS events without operator action, and without the support of active shutdown, shutdown heat removal, or any automatic system without damage to the plant and without jeopardizing public safety. The transient analysis of the core designs has been focused on severe events to assess the margins in the design, and ATWS events are the most severe events that must be accommodated by the KALIMER design. The ATWS performance has been evaluated for the preliminary initial core design of KALIMER with a particular emphasis on the inherent negative reactivity feedback effects, including the Doppler, sodium density, fuel axial expansion, core radial expansion, and control rod driveline expansion. Results show that the Uranium metal core design meets the temperature limits with margin.

  • PDF

Study on Simulation of Fuel Injection Nozzle for Marine Medium Speed Diesel Engine (선박용 중속디젤엔진 연료분사노즐 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-47
    • /
    • 2013
  • This study was carried out to improve the design of fuel injection nozzle for marine medium speed diesel engine. For this purpose, fuel injection nozzle was modeled and simulated using CATIA V5R19 and FLUENT & MSC Nastran. Analyses of flow and heat transfer, respectively, were performed to find the optimal design of fuel injection nozzle. As the results, big pressure drop, which may lead to cavitation damage, was occurred at inlet of fuel injection hole with diameter 0.3mm. Furthermore, it was confirmed that the increase of mean temperature of fuel injection nozzle was almost a half in comparison with that of fuel injection nozzle tip.

Charpy 충격시험편을 이용한 로터강의 인성 열화도 평가

  • 남승훈;김시천;이해무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.728-731
    • /
    • 1995
  • Miniaturzed specimen technology permits mechanical bechanical behavior to be determined using a minimum volume of material. because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to the rotor. In addition, it is different to collect a large amount of actual turbine rotor steels. Hence seven kinds of specimen with different degradation levels were prepared by isothermal aging heat treatment at 630 .deg. C. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. The relation between fracture toughness and DBTT was investigated The characteristics of minaturized impact speciments technique was discussed. Finally, the estimating method of fracture toughness using a single impact specimen was introduced.

  • PDF

Active Control Method of Heat-Duct Coupled Noise in a Cylindrical Combustor (원통형 연소기에서의 열-덕트 연성 소음의 능동 제어 연구)

  • 조상연;이용석;엄승신;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.678-683
    • /
    • 1998
  • Combustion instability by thermoacoustic feedback incite strong low frequency noise and vibration which damage the system and provoke the environmental problems. Therefore, it is necessary to control the thermoacoustic oscillation. In the way of controlling the instability, active control method using adaptive algorithm is applied. In this study, active noise control method using anti-sound technique is selected, whose principle is cancelling the noise with the addition of opposite phase sound. At first, simulation is performed to confirm the stability of controller, and after that control of combustion instability is carried out to get cancellation of 20-30dB SPL.

  • PDF

A Study of Thermal Behaviors on the Effect of Aspect Ratio of Ventilation Hole in Disk Brake (디스크 브레이크의 방열구 형상비에 따른 열적 거동에 관한 연구)

  • 김진택
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.384-388
    • /
    • 2002
  • The adequate design of a passenger car braking system, which is directly related to the safety of a car, is very important since the safety is an essential design parameter of a car to keep men and car from the damage. The thermal behaviors of the ventilated disk has been investigated based on the air cooling effects during repeat braking operations. In this study, the thermal behavior of ventilated disk brake system was investigated by numerical method. The 3-Dimensional unsteady model was simulated by using a general purpose software package “FLUENT” to obtain the temperature distributions of disk and pad. The model includes the more realistic braking method, which repeats braking and release. The effects of aspect ratio of ventilated hole on the heat dissipation was investigated.