• 제목/요약/키워드: heat transfer method

검색결과 2,033건 처리시간 0.029초

수치 해석을 이용한 단일 마이크로채널의 단면 가열 조건의 열전달 특성에 관한 연구 (Investigation of Heat Transfer in Microchannel with One-Side Heating Condition Using Numerical Analysis)

  • 최치웅;허철;김동억;김무환
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.986-993
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method far high density electronic devices. The cross-sectional shape of MEMS based microchannel heat sink is limited to triangular, trapezoidal, and rectangular due to their fabrication method. And heat is added to one side surface of heat source. Therefore, those specific conditions make some complexity of heat transfer in microchannel heat sink. Though many previous research of conjugate heat transfer in microchannel was conducted, most of them did not consider heat loss. In this study, numerical investigation of conjugate heat transfer in rectangular microchannel was conducted. The method of heat loss evaluation was verified numerically. Heat distribution was different for each wall of rectangular microchannel due to thermal conductivity and distance from heat source. However, the ratio of heat from each channel wall was correlated. Therefore, the effective area correction factor could be proposed to evaluate accurate heat flux in one side heating condition.

태양복사열이 투사되는 주거공간 벽면의 열전달에 관한연구 (A Study on the Heat transfer in Residential Space Wall having Solar Radiation)

  • 고영렬;손철수
    • 한국주거학회논문집
    • /
    • 제15권3호
    • /
    • pp.93-99
    • /
    • 2004
  • This study was conducted to estimate the solar energy, as an alternative energy evaluating an effect of solar radiation on indoor space of residential building. The basic data of solar radiation which is useful for architectural design was suggested using theoretical and experimental analysis. Accordingly, this study was carried out measuring the solar energy using Explicit Method. These results were compared with the results using steady state heat transfer method. The results of this study are summarized as follows; Based on the results using Explicit Method and steady state heat transfer on the indoor space of building, it was shown that an analysis on heat transfer using Explicit Method is more sensitive to the outdoor environmental changes. The results using Explicit Method to analysis and evaluate the solar radiation should be used for residential building design.

미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법 (A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method)

  • 이상혁;김주한;이나리;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF

환기구를 가진 실내공간에서 복사 및 대류열전달의 비교 연구 (The Comparison Study of Radiative and Convective Heat Transfer in a Room Air Ventilation)

  • 정효민;정한식;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권3호
    • /
    • pp.229-235
    • /
    • 1997
  • The comparison of radiative and convective heat transfer in a room air ventilation is investi¬gated by a numerical simulation. The room air temperature distributions with radiation are appeared more uniform than without radiation at Gr= 1460 and Re=50. The mean Nusselt number in the radiative heat transfer shows less value than convective heat transfer. The total mean Nusselt number is found Wall 1> Wall 3${\fallingdotseq}$Wall 2 7 Wall 4.

  • PDF

대형 LPG 엔진 피스톤의 온도 분포 해석을 위한 열전도 역문제에 관한 연구 (Research on the Inverse Heat Conduction Problem for Thermal Analysis of a Large LPG Engine Piston)

  • 이부윤;박철우;최경호
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.146-159
    • /
    • 2002
  • An efficient method to predict the convection heat transfer coefficients on the top surface of the engine piston is proposed. The method is based on the inverse method of the thermal conduction problem and uses a numerical optimization technique. In the method, the heat transfer coefficients are numerically obtained so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. The method can be effectively used to analyze the temperature distribution of engine pistons in case when application of prescribed-temperature boundary condition is not reasonable because of insufficient number of measured temperatures. A hollow sphere problem with an analytic solution is taken as a simple example and accuracy and efficiency is demonstrated. The method is applied to a practical large liquid petroleum gas(LPG) engine piston and the heat transfer coefficients on the top surface of the piston is successfully calculated. Resulting analyzed temperature favorably coincides with measured temperature.

열성층 배관 유동에 대한 3차원 열전달 해석 (Three Dimensional Heat Transfer Analysis of a Thermally Stratified Pipe Flow)

  • Jo Jong Chull;Kim Byung Soon
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.103-106
    • /
    • 2002
  • This paper presents an effective numerical method for analyzing three-dimensional unsteady conjugate heat transfer problems of a curved pipe subjected to infernally thermal stratification. In the present numerical analyses, the thermally stratified flows in the pipe are simulated using the standard $k-{\varepsilon}$turbulent model and the unsteady conjugate heat transfer is treated numerically with a simple and convenient numerical technique. The unsteady conjugate heat transfer analysis method is implemented in a finite volume thermal-hydraulic computer code based on a non-staggered grid arrangement, SIMPLEC algorithm and higher-order bounded convection scheme. Numerical calculations have been performed far the two cases of thermally stratified pipe flows where the surging directions are opposite each other i.e. In-surge and out-surge. The results show that the present numerical analysis method is effective to solve the unsteady flow and conjugate heat transfer in a curved pipe subjected to infernally thermal stratification.

  • PDF

열전달과 물질전달의 유사성에 관한 연구 (A study on the Analogy between Heat Transfer and Mass Transfer)

  • 유성연;노종광;정문기
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2624-2633
    • /
    • 1993
  • Mass transfer experiment by naphthalene sublimation method has great advantages in measurement of local transfer coefficients in the region of a three dimensional flow or for a model of complex geometry, which is considered to be very difficult with conventional heat transfer measurements. Mass transfer data obtained by naphthalene sublimation technique are converted to the heat transfer data through heat/mass transfer analogy. This analogy is valid for a simple or laminar flow, but new insight is needed when applying to a turbulent flow or complex flow such as separation, reattachment and recirculation, The purpose of this research is to investigate how geometries and flow conditions incorporate heat/mass transfer analogy. Mass transfer experiments are performed using naphthalene sublimation technique for a flat plate, a circular cylinder, and rectangular cylinders. And mass transfer data are compared with earlier heat transfer measurements for the same geometries. Usefulness of analogy relation between heat and mass transfer is examined with these results.

전열면적 및 유체의 종류가 핵비등 열전달에 미치는 영향과 그 원인 (MECHANISM OF NUCLEATE BOILING HEAT TRANSFER FROM WIRES IMMERSED IN SATURATED FC-72 AND WATER)

  • 김주한;유승문;박종연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.232-239
    • /
    • 2001
  • The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles, varying $25{\mu}m,\;75{\mu}m,\;and\;390{\mu}m$, from a wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of $390{\mu}m$ was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.

  • PDF

Tube의 형상 및 표면특성에 의한 Shell-and-Tube 열교환기의 열전달 성능 (The Performance in Shell-and-Tube Heat Exchangers with Configuration and Surface Characteristics of Tube)

  • 김성일;박기호;전원표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2316-2321
    • /
    • 2008
  • This paper presents an improved performance of heat transfer for shell-and-tube and thermal analysis based on the Bell-Delaware method for single tube. Heat transfer has been compared for a smooth tube, helical tube and surface-coated tube. In general, the results showed that properly designed helical tube and surface-coated tube offer a significant improvement in heat transfer. The numerical results derived from the Bell-Delaware method for the shell-side heat transfer coefficient were verified with experimental results. The thermal analysis aids significantly in the solution of the design problem.

  • PDF

용탕단조에 있어서의 열전달 해석 (Computer Analysis of Heat Transfer in Squeeze Casting)

  • 유승목;한요섭;이호인;홍준표
    • 한국주조공학회지
    • /
    • 제10권6호
    • /
    • pp.495-502
    • /
    • 1990
  • A basic heat flow model has been developed to estimate the heat transfer coefficient at the casting/mold interface during squeeze casting. Based on the measured temperature profiles in squeeze casting of Al-4.5%Si alloy, heat transfer coefficients which vary with time were calculated by numerical method. The influences of the load and the amount of fraction solid on the heat transfer coefficient have also been studied. Using the calculated heat transfer coefficient two dimensional solidification analysis in the squeeze casting process was carried out by the finite difference method, and the results were in good agreement with the experiments. It may be concluded that heat flow analysis in the squeeze casting process with accurate heat transfer coefficient at the casting /mold interface is important for a proper design of cooling in die and finally for improving productivity and die life as well.

  • PDF