• 제목/요약/키워드: heat shock response

검색결과 206건 처리시간 0.025초

Heat Shock Responses for Understanding Diseases of Protein Denaturation

  • Kim, Hee-Jung;Hwang, Na Rae;Lee, Kong-Joo
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.123-131
    • /
    • 2007
  • Extracellular stresses induce heat shock response and render cells resistant to lethal stresses. Heat shock response involves induction of heat shock proteins (Hsps). Recently the roles of Hsps in neurodegenerative diseases and cancer are attracting increasing attention and have accelerated the study of heat shock response mechanism. This review focuses on the stress sensing steps, molecules involved in Hsps production, diseases related to Hsp malfunctions, and the potential of proteomics as a tool for understanding the complex signaling pathways relevant to these events.

Heat-Shocked Drosophila Kc Cells Have Differential Sensitivity to Translation Inhibitors

  • Han, Ching-Tack
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.55-59
    • /
    • 1997
  • The heat shock response is a universal stress response observed in all organisms and cultured cells. The response is regulated at both the transcriptional and translational level. Heat shocked Drosophila melanogaster Kc cells are used as the system for the study of translational regulation. In this system non-heat shock messages are associated with polysome but are not translated in a heat shocked condition. To figure out the change in the translation machinery. the effects of translation elongation inhibitors were tested on Kc cells. The result showed that the sensitivity of translation to these drugs changed in heat shocked cells. The significant changes were the decreased inhibition of heat shock protein synthesis by cycloheximide, emetine. and puromycin. and the increased inhibition of heat shock protein synthesis by verrucarin A. implying that the translation elongation mechanism in heat shocked cells changed.

  • PDF

HSP27 EXPRESSION IN OSTEOBLAST BY THERMAL STRESS (골모세포에서 열자극에 의한 Hsp27 발현에 대한 연구)

  • Rim, Jae-Suk;Kim, Byeong-Ryol;Kwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Suk;Jun, Sang-Ho;Woo, Hyeon-Il
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권1호
    • /
    • pp.11-21
    • /
    • 2008
  • Aim of the study: Thermal stress is a central determinant of osseous surgical outcomes. Interestingly, the temperatures measured during endosseous surgeries coincide with the temperatures that elicit the heat shock response of mammalian cells. The heat shock response is a coordinated biochemical response that helps to protect cells from stresses of various forms. Several protective proteins, termed heat shock proteins (hsp) are produced as part of this response. To begin to understand the role of the stress response of osteoblasts during surgical manipulation of bone, the heat shock protein response was evaluated in osteoblastic cells. Materials & methods: With primary cell culture studies and ROS 17/2.8 osteoblastic cells transfected with hsp27 encoding vectors culture studies, the thermal stress response of mammalian osteoblastic cells was evaluated by immunohistochemistry and western blot analysis. Results: Immunocytochemistry indicated that hsp27 was present in unstressed osteoblastic cells, but not fibroblastic cells. Primarily cultured osteoblasts and fibroblasts expressed the major hsp in response to thermal stress, however, the small Mr hsp, hsp27 was shown to be a constitutive product only in osteoblasts. Creation of stable transformed osteoblastic cells expressing abundant hsp27 protein was used to demonstrate that hsp27 confers stress resistance to osteoblastic cells. Conclusions: The demonstrable presence and function of hsp27 in cultured bones and cells implicates this protein as a determinant of osteoblastic cell fate in vivo.

Heat Shock RNA 1, Known as a Eukaryotic Temperature-Sensing Noncoding RNA, Is of Bacterial Origin

  • Choi, Dongjin;Oh, Hye Ji;Goh, Chul Jun;Lee, Kangseok;Hahn, Yoonsoo
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1234-1240
    • /
    • 2015
  • Heat shock RNA 1 (HSR1) is described as a "eukaryotic heat-sensing noncoding RNA" that regulates heat shock response in human and other eukaryotic cells. Highly conserved HSR1 sequences have been identified from humans, hamsters, Drosophila, Caenorhabditis elegans, and Arabidopsis. In a previous study, however, it was suggested that HSR1 had originated from a bacterial genome. HSR1 showed no detectible nucleotide sequence similarity to any eukaryotic sequences but harbored a protein coding region that showed amino-acid sequence similarity to bacterial voltage-gated chloride channel proteins. The bacterial origin of HSR1 was not convincible because the nucleotide sequence similarity was marginal. In this study, we have found that a genomic contig sequence of Comamonas testosteroni strain JL14 contained a sequence virtually identical to that of HSR1, decisively confirming the bacterial origin of HSR1. Thus, HSR1 is an exogenous RNA, which can ectopically trigger heat shock response in eukaryotes. Therefore, it is no longer appropriate to cite HSR1 as a "eukaryotic functional noncoding RNA."

Heat shock transcription factors and sensory placode development

  • Nakai, Akira
    • BMB Reports
    • /
    • 제42권10호
    • /
    • pp.631-635
    • /
    • 2009
  • The heat shock transcription factor (HSF) family consists of at least three members in mammals and regulates expression of heat shock proteins in response to heat shock and proteotoxic stresses. Especially, HSF1 is indispensable for this response. Members of this family are also involved in development of some tissues such as the brain and reproductive organs. However, we did not know the molecular mechanisms that regulate developmental processes. Involvement of HSFs in the sensory development was implicated by the finding that human hereditary cataract is associated with mutations of the HSF4 gene. Analysis of gene-disrupted mice showed that HSF4 and HSF1 are required for the lens and the olfactory epithelium, respectively. Furthermore, a common molecular mechanism that regulates developmental processes was revealed by analyzing roles of HSFs in the two developmentally-related organs.

Expression of the Heat Shock Proteins in HeLa and Fish CHSE-214 Cells Exposed to Heat Shock (어류 CHSE-214와 인간 HeLa 세포에서의 열충격에 의한 Heat Shock Protein의 발현)

  • 공회정;강호성김한도
    • The Korean Journal of Zoology
    • /
    • 제39권2호
    • /
    • pp.123-131
    • /
    • 1996
  • In this study, we examined the expression of heat shock proteins (HSPs) in fish cell line CHSE-2lnl and human HeLa cells exposed to heat shock. In fish CHSE-214 cells HSP70 was the major polvpeptide induced by an elevated temperature or an amino acid analog, while in HeLa cells HSP90 as well as HSP70 were prominently enhanced in response to these stresses. Pretreatment of actinomvcin D prior to heat shock completely inhibited the induction of fish HSP70, indicating the transcriptional regulation of fish HSP70 gene expression. In HeLa and CHSE-214 cells either recovering from heat shock or experiencing prolonged heat shock, attenuation in the HSP90 a'nd HSP70 induction occurred but both induction and repression of HSP70 synthesis appear 19 precede those of HSP90. Moreover, attenuation did not occur in the syntheses of 40 kDa and 42 kOto proteins which were only induced in CHSE-214 cells. The enhanced syntheses of these he proteins continued as long as CHSE-214 cells were Siven heat shock. These results suggest that down-regulation of HSP syntheses during prolonged heat shock may be controlled by several different. as vet undefined, mechanisms.

  • PDF

Comparison of Thermal Stress Induced Heat Shock Factor 1 (HSF1) in Goldfish and Mouse Hepatocyte Cultures (붕어와 마우스의 간세포 배양에서 열 스트레스에 의해 유도되는 heat shock factor1 (HSF1)의 비교)

  • Kim, So-Sun;So, Jae-Hyeong;Park, Jang-Su
    • Journal of Life Science
    • /
    • 제26권12호
    • /
    • pp.1360-1366
    • /
    • 2016
  • Heat shock proteins (HSPs) are induced in response to various physiological or environmental stressors. However, the transcriptional activation of HSPs is regulated by a family of heat shock factors (HSFs). Fish models provide an ideal system for examining the biochemical and molecular mechanisms of adaptation to various temperatures and water environments. In this study, we examined the pattern differentials of heat shock factor 1 (HSF1) and expression of heat shock protein 70 (HSP70) in response to thermal stress in goldfish and mouse hepatocyte cultures by immune-blot analysis. Goldfish HSF1 (gfHSF1) changed from a monomer to a trimer at $33^{\circ}C$ and showed slightly at $37^{\circ}C$, whereas mouse HSF1 (mHSF1) did so at $42^{\circ}C$. This experiment showed similar results to a previous study, indicating that gfHSF1 and mHSF1 play different temperature in the stress response. We also examined the activation conditions of the purified recombinant proteins in human HSF1 (hmHSF1) and gfHSF1 using CD spectroscopy and immune-blot analysis. The purified recombinant HSF1s were treated from $25^{\circ}C$ to $42^{\circ}C$. Structural changes were observed in hmHSF1 and gfHSF1 according to the heat-treatment conditions. These results revealed that both mammal HSF1 (human and mouse HSF1) and fish HSF1 exhibited temperature-dependent changes; however, their optimal activation temperatures differed.

Analysis of heat, cold or salinity stress-inducible genes in the Pacific abalone, Haliotis discus hannai, by suppression subtractive hybridization

  • Nam, Bo-Hye;Park, Eun-Mi;Kim, Young-Ok;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min
    • The Korean Journal of Malacology
    • /
    • 제29권3호
    • /
    • pp.181-187
    • /
    • 2013
  • In order to investigate environmental stress inducible genes in abalone, we analyzed differentially expressed transcripts from a Pacific abalone, Haliotis discus hannai, after exposure to heat-, cold- or hyposalinity-shock by suppression subtractive hybridization (SSH) method. 1,074 unique sequences from SSH libraries were composed to 115 clusters and 986 singletons, the overall redundancy of the library was 16.3%. From the BLAST search, of the 1,316 ESTs, 998 ESTs (75.8%) were identified as known genes, but 318 clones (24.2%) did not match to any previously described genes. From the comparison results of ESTs pattern of three SSH cDNA libraries, the most abundant EST was different in each SSH library: small heat shock protein p26 (sHSP26) in heat-shock, trypsinogen 2 in cold-shock, and actin in hyposalinity SSH cDNA library. Based on sequence similarities, several response-to-stress genes such as heat shock proteins (HSPs) were identified commonly from the abalone SSH libraries. HSP70 gene was induced by environmental stress regardless of temperature-shock or salinity-stress, while the increase of sHSP26 mRNA expression was not detected in cold-shock but in heat-shock condition. These results suggest that the suppression subtractive hybridization method is an efficient way to isolate differentially expressed gene from the invertebrate environmental stress-response transcriptome.

SB202190- and SB203580-Sensitive p38 Mitogen-Activated Protein Kinase Positively Regulates Heat Shock- and Amino Acid Analog-Induced Heat Shock Protein Expression

  • Kim, Sun-Hee;Han, Song-Iy;Oh, Su-Young;Seo, Myoung-Suk;Park, Hye-Gyeong;Kang, Ho-Sung
    • Biomedical Science Letters
    • /
    • 제9권2호
    • /
    • pp.59-65
    • /
    • 2003
  • When cells are exposed to proteotoxic stresses such as heat shock, amino acid analogs, and heavy metals, they increase the synthesis of the heat shock proteins (HSPs) by activating the heat shock transcription factor 1 (HSF1), whose activity is controlled via multiple steps including homotrimerization, nuclear translocation, DNA binding, and hyperphosphorylation. Under unstressed conditions, the HSF1 activity is repressed through its constitutive phosphorylation by glycogen synthase kinase 3$\beta$ (GSK3$\beta$), extracellular regulated kinase 1/2 (ERK1/2), and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). However, the protein kinase (s) responsible for HSF1 hyperphosphorylation and activation is not yet identified. In the present study, we observed that profile of p38 mitogen-activated protein kinase (p38MAPK) activation in response to heat shock was very similar to those of HSF1 hyperphosphorylation and nuclear translocation. Therefore, we investigated whether p38MAPK is involved in the heat shock-induced HSF1 activation and HSP expression. Here we show that the p38MAPK inhibitors, SB202190 and SB203580, but not other inhibitors including the MEK1/2 inhibitor PD98059 and the PI3-K inhibitor LY294002 and wortmannin, suppress HSF1 hyperphosphorylation in response to heat shock and L-azetidine 2-carboxylic acid (Azc), but not to heavy metals. Furthermore, heat shock-induced HSF1-DNA binding and HSP72 expression was specifically prevented by the p38MAPK inhibitors, but not by the MEK1/2 inhibitor and the PI3-K inhibitors. These results suggest that SB202190- and SB203580-sensitive p38MAPK may positively regulate HSP gene regulation in response to heat shock and amino acid analogs.

  • PDF

Stress-shock Response of a Methylotrophic Bacterium Methylovorus sp. strain SSl DSM 11726

  • Park, Jong H.;Kim, Si W.;Kim, Eungbin;Young T. Ro;Kim, Young M.
    • Journal of Microbiology
    • /
    • 제39권3호
    • /
    • pp.162-167
    • /
    • 2001
  • Methylovorus sp. strain SS1 DSM 11726 was found to grow continuously when it was transferred from 30$\^{C}$ to 40$\^{C}$ and 43$\^{C}$. A shift in growth temperature from 30$\^{C}$ to 45$\^{C}$, 47$\^{C}$ and 50$\^{C}$ reduced the viability of the cell population by more than 10$^2$, 10$^3$and 10$\^$5/ folds, respectively, after 1h cultivation. Cells transferred to 47$\^{C}$ and 50$\^{C}$ after preincubation for 15 min at 43$\^{C}$, however, exhibited 10-fold increase in viability. It was found that incubation for 15 min at 40$\^{C}$ of Methylovorus sp. strain SSl grown at 30$\^{C}$ was sufficient to accelerate the synthesis of a specific subset of proteins. The major heat shock proteins had apparent molecular masses of 90, 70, 66, 60, and 58 kDA. The 60 and 58 kDa proteins were found to cross-react with the antiserum raised against GroEL protein. The heat shock response persisted for over 1h. The shock proteins were stable for 90 min in the cell. Exposure of the cells to methanol induced proteins identical to the heat shock proteins. Addition of ethanol induced a unique protein with a molecular mass of about 40 kDa in addition to the heat-induced proteins. The proteins induced in paraquat-treated cells were different from the heat shock proteins, except the 70 and 60 kDa proteins.

  • PDF