Heat Shock Responses for Understanding Diseases of Protein Denaturation

  • Kim, Hee-Jung (The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Womans University) ;
  • Hwang, Na Rae (The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Womans University) ;
  • Lee, Kong-Joo (The Center for Cell Signaling and Drug Discovery Research, College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Womans University)
  • Received : 2007.04.10
  • Accepted : 2007.04.12
  • Published : 2007.04.30

Abstract

Extracellular stresses induce heat shock response and render cells resistant to lethal stresses. Heat shock response involves induction of heat shock proteins (Hsps). Recently the roles of Hsps in neurodegenerative diseases and cancer are attracting increasing attention and have accelerated the study of heat shock response mechanism. This review focuses on the stress sensing steps, molecules involved in Hsps production, diseases related to Hsp malfunctions, and the potential of proteomics as a tool for understanding the complex signaling pathways relevant to these events.

Keywords

Acknowledgement

Supported by : KOSEF

References

  1. Aghdassi, A., Phillips, P., Dudeja, V., Dhaulakhandi, D., Sharif, R., et al. (2007) Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res. 67, 616−625
  2. Ahn, S. G. and Thiele, D. J. (2003) Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev. 17, 516−528
  3. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q., Lee, V. M., and Bonini, N. M. (2002) Chaperone suppression of alphasynuclein toxicity in a Drosophila model for Parkinson's disease. Science 295, 865−868 https://doi.org/10.1126/science.1067081
  4. Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., et al. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217−221
  5. Bogoyevitch, M. A. (2006) The isoform-specific functions of the c-Jun N-terminal kinases (JNKs): differences revealed by gene targeting. Bioessays 28, 923−934
  6. Bost, F., McKay, R., Bost, M., Potapova, O., Dean, N. M., et al. (1999) The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol. Cell. Biol. 19, 1938−1949
  7. Broquet, A. H., Thomas, G., Masliah, J., Trugnan, G., and Bachelet, M. (2003) Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J. Biol. Chem. 278, 21601− 21606
  8. Bush, K. T., Goldberg, A. L., and Nigam, S. K. (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J. Biol. Chem. 272, 9086−9092
  9. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B., and Ciocca, D. R. (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci. 31, 164−172
  10. Chang, T. S., Jeong, W., Choi, S. Y., Yu, S., Kang, S. W., et al. (2002) Regulation of peroxiredoxin I activity by Cdc2- mediated phosphorylation. J. Biol. Chem. 277, 25370−25376
  11. Chen, N., Nomura, M., She, Q. B., Ma, W. Y., Bode, A. M., et al. (2001a) Suppression of skin tumorigenesis in c-Jun NH(2)- terminal kinase-2-deficient mice. Cancer Res. 61, 3908−3912
  12. Chen, Y. R., Shrivastava, A., and Tan, T. H. (2001b) Downregulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate. Oncogene 20, 367−374
  13. Chu, B., Soncin, F., Price, B. D., Stevenson, M. A., and Calderwood, S. K. (1996) Sequential phosphorylation by mitogenactivated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271, 30847−30857
  14. Chu, B., Zhong, R., Soncin, F., Stevenson, M. A., and Calderwood, S. K. (1998) Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J. Biol. Chem. 273, 18640−18646 https://doi.org/10.1074/jbc.273.15.8646
  15. Clark, J. I. and Muchowski, P. J. (2000) Small heat-shock proteins and their potential role in human disease. Curr. Opin. Struct. Biol. 10, 52−59
  16. Cummings, C. J., Sun, Y., Opal, P., Antalffy, B., Mestril, R., et al. (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511−1518
  17. Davis, R. J. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103, 239−252
  18. Dorion, S., Lambert, H., and Landry, J. (2002) Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1. J. Biol. Chem. 277, 30792−30797
  19. Dou, F., Netzer, W. J., Tanemura, K., Li, F., Hartl, F. U., et al. (2003) Chaperones increase association of tau protein with microtubules. Proc. Natl. Acad. Sci. USA 100, 721−726
  20. Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E., et al. (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5, 2592−2601
  21. Giannoni, E., Buricchi, F., Raugei, G., Ramponi, G., and Chiarugi, P. (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchoragedependent cell growth. Mol. Cell. Biol. 25, 6391−6403
  22. Guettouche, T., Boellmann, F., Lane, W. S., and Voellmy, R. (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem. 6, 4
  23. Han, M. J., Kim, B. Y., Yoon, S. S., and Chung, A. S. (2003) Cell proliferation induced by reactive oxygen species is mediated via mitogen-activated protein kinase in Chinese hamster lung fibroblast (V79) cells. Mol. Cells 15, 94−101
  24. Hietakangas, V., Ahlskog, J. K., Jakobsson, A. M., Hellesuo, M., Sahlberg, N. M., et al. (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell. Biol. 23, 2953−2968
  25. Holmberg, C. I., Hietakangas, V., Mikhailov, A., Rantanen, J. O., Kallio, M., et al. (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J. 20, 3800−3810
  26. Holmberg, C. I., Tran, S. E., Eriksson, J. E., and Sistonen, L. (2002) Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem. Sci. 27, 619−627 https://doi.org/10.1016/S0968-0004(02)02211-9
  27. Hong, Y., Rogers, R., Matunis, M. J., Mayhew, C. N., Goodson, M. L., et al. (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J. Biol. Chem. 276, 40263−40267
  28. Horwitz, J. (1992) Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449−10453
  29. Hu, Y. and Mivechi, N. F. (2006) Association and regulation of heat shock transcription factor 4b with both extracellular signal- regulated kinase mitogen-activated protein kinase and dual-specificity tyrosine phosphatase DUSP26. Mol. Cell. Biol. 26, 3282−3294
  30. Huot, J., Lambert, H., Lavoie, J. N., Guimond, A., Houle, F., et al. (1995) Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation- dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur. J. Biochem. 227, 416−427
  31. Jacquier-Sarlin, M. R. and Polla, B. S. (1996) Dual regulation of heat-shock transcription factor (HSF) activation and DNAbinding activity by $H_2O_2$: role of thioredoxin. Biochem. J. 318 (Pt 1), 187−93
  32. Jana, N. R., Tanaka, M., Wang, G., and Nukina, N. (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet. 9, 2009−2018
  33. Kakimura, J.-I., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., et al. (2002) Microglial activation and amyloid-{beta} clearance induced by exogenous heat-shock proteins. FASEB J. 16, 601−603
  34. Kallio, M., Chang, Y., Manuel, M., Alastalo, T. P., Rallu, M., et al. (2002) Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J. 21, 2591−2601
  35. Kim, D., Kim, S. H., and Li, G. C. (1999) Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem. Biophys. Res. Commun. 254, 264−268
  36. Kim, H. J. and Lee, K. J. (2002) Heat shock and ceramide have different apoptotic pathways in radiation induced fibrosarcoma (RIF) cells. Mol. Cell Biochem. 229, 139−151
  37. Kim, H. J., Song, E. J., and Lee, K. J. (2002) Proteomic analysis of protein phosphorylations in heat shock response and thermotolerance. J. Biol. Chem. 277, 23193−23207
  38. Kim, S. A., Yoon, J. H., Lee, S. H., and Ahn, S. G. (2005) Pololike kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J. Biol. Chem. 280, 12653−12657
  39. Kim, Y. M., Kim, K. E., Koh, G. Y., Ho, Y. S., and Lee, K. J. (2006) Hydrogen peroxide produced by angiopoietin-1 mediates angiogenesis. Cancer Res. 66, 6167−6174
  40. Kim, Y. M., Song, E. J., Seo, J., Kim, H. J., and Lee, K. J. (2007) Proteomic analysis of tyrosine phosphorylations in vascular endothelial growth factor- and reactive oxygen species- mediated signaling pathway. J. Proteome Res. 6, 593− 601
  41. Kline, M. P. and Morimoto, R. I. (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17, 2107− 2115
  42. Klucken, J., Shin, Y., Masliah, E., Hyman, B. T., and McLean, P. J. (2004) Hsp70 reduces alpha-synuclein aggregation and toxicity. J. Biol. Chem. 279, 25497−25502
  43. Kondo, T., Matsuda, T., Kitano, T., Takahashi, A., Tashima, M., et al. (2000) Role of c-jun expression increased by heat shock- and ceramide-activated caspase-3 in HL-60 cell apoptosis. Possible involvement of ceramide in heat shockinduced apoptosis. J. Biol. Chem. 275, 7668−7676
  44. Kuan, C. Y., Yang, D. D., Samanta Roy, D. R., Davis, R. J., Rakic, P., et al. (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667−676
  45. Kyriakis, J. M. and Avruch, J. (2001) Mammalian mitogenactivated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807−869
  46. Landry, J., Chretien, P., Laszlo, A., and Lambert, H. (1991) Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells. J. Cell. Physiol. 147, 93−101
  47. Lavoie, J. N., Lambert, H., Hickey, E., Weber, L. A., and Landry, J. (1995) Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol. Cell. Biol. 15, 505−516
  48. Lee, S. Y., Song, E. J., Kim, H. J., Kang, H. J., Kim, J. H., et al. (2001) Rac1 regulates heat shock responses by reorganization of vimentin filaments: identification using MALDI-TOF MS. Cell Death Differ. 8, 1093−1102
  49. Lin, R. Z., Hu, Z. W., Chin, J. H., and Hoffman, B. B. (1997) Heat shock activates c-Src tyrosine kinases and phosphatidylinositol 3-kinase in NIH3T3 fibroblasts. J. Biol. Chem. 272, 31196−31202
  50. Lindquist, S. (1986) The heat-shock response. Annu. Rev. Biochem. 55, 1151−1191
  51. Lindquist, S. and Craig, E. A. (1988) The heat-shock proteins. Annu. Rev. Genet. 22, 631−677
  52. Manalo, D. J., Lin, Z., and Liu, A. Y. (2002) Redox-dependent regulation of the conformation and function of human heat shock factor 1. Biochemistry 41, 2580−2588
  53. Mathew, A., Mathur, S. K., and Morimoto, R. I. (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 18, 5091−5098
  54. Mayer, M. P. and Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 62, 670−684
  55. McLean, P. J., Kawamata, H., Shariff, S., Hewett, J., Sharma, N., et al. (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J. Neurochem. 83, 846−854
  56. Meriin, A. B., Yaglom, J. A., Gabai, V. L., Zon, L., Ganiatsas, S., et al. (1999) Protein-damaging stresses activate c-Jun Nterminal kinase via inhibition of its dephosphorylation: a novel pathway controlled by HSP72. Mol. Cell. Biol. 19, 2547−2555
  57. Minami, Y., Hohfeld, J., Ohtsuka, K., and Hartl, F. U. (1996) Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J. Biol. Chem. 271, 19617−19624
  58. Morimoto, R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788−3796
  59. Muchowski, P. J., Schaffar, G., Sittler, A., Wanker, E. E., Hayer- Hartl, M. K., et al. (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloidlike fibrils. Proc. Natl. Acad. Sci. USA 97, 7841−7846
  60. Muchowski, P. J. and Wacker, J. L. (2005) Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11−22
  61. Muda, M., Theodosiou, A., Rodrigues, N., Boschert, U., Camps, M., et al. (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen- activated protein kinases. J. Biol. Chem. 271, 27205− 27208
  62. Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R. I., et al. (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17, 469−481
  63. Pagliari, L. J., Kuwana, T., Bonzon, C., Newmeyer, D. D., Tu, S., et al. (2005) The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proc. Natl. Acad. Sci. USA 102, 17975−17980
  64. Palacios, C., Collins, M. K., and Perkins, G. R. (2001) The JNK phosphatase M3/6 is inhibited by protein-damaging stress. Curr. Biol. 11, 1439−1443
  65. Park, J. and Liu, A. Y. (2001) JNK phosphorylates the HSF1 transcriptional activation domain: role of JNK in the regulation of the heat shock response. J. Cell. Biochem. 82, 326− 338
  66. Philip, B. and Levin, D. E. (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell. Biol. 21, 271−280
  67. Pirkkala, L., Nykanen, P., and Sistonen, L. (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118−1131
  68. Potapova, O., Anisimov, S. V., Gorospe, M., Dougherty, R. H., Gaarde, W. A., et al. (2002) Targets of c-Jun NH(2)-terminal kinase 2-mediated tumor growth regulation revealed by serial analysis of gene expression. Cancer Res. 62, 3257−3263
  69. Rhee, S. G. (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312, 1882−1883 https://doi.org/10.1126/science.1125461
  70. Rhee, S. G., Bae, Y. S., Lee, S. R., and Kwon, J. (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE 2000, PE1 https://doi.org/10.1126/stke.2000.18.pe1
  71. Rhee, S. G., Kang, S. W., Jeong, W., Chang, T. S., Yang, K. S., et al. (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell Biol. 17, 183−189
  72. Richly, H., Rape, M., Braun, S., Rumpf, S., Hoege, C., et al. (2005) A series of ubiquitin binding factors connects CDC48/ p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73−84
  73. Rubinsztein, D. C. (2006) The roles of intracellular proteindegradation pathways in neurodegeneration. Nature 443, 780−786
  74. Sabapathy, K., Jochum, W., Hochedlinger, K., Chang, L., Karin, M., et al. (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech. Dev. 89, 115−124
  75. Sherman, M. Y. and Gabai, V. L. (2006) Multiple thermometers in mammalian cells: why do cells from homeothermic organisms need to measure temperature? Sci. STKE 2006, pe16
  76. Shimura, H., Miura-Shimura, Y., and Kosik, K. S. (2004) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J. Biol. Chem. 279, 17957−17962
  77. Shinka, T., Sato, Y., Chen, G., Naroda, T., Kinoshita, K., et al. (2004) Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol. Reprod. 71, 297−306
  78. Shorter, J. and Lindquist, S. (2004) Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793−1797
  79. Song, E. J., Yim, S. H., Kim, E., Kim, N. S., and Lee, K. J. (2005) Human Fas-associated factor 1, interacting with ubiquitinated proteins and valosin-containing protein, is involved in the ubiquitin-proteasome pathway. Mol. Cell. Biol. 25, 2511−2524
  80. Todd, J. L., Rigas, J. D., Rafty, L. A., and Denu, J. M. (2002) Dual-specificity protein tyrosine phosphatase VHR downregulates c-Jun N-terminal kinase (JNK). Oncogene 21, 2573−2583
  81. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., et al. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664−666
  82. Warrick, J. M., Chan, H. Y., Gray-Board, G. L., Chai, Y., Paulson, H. L., et al. (1999) Suppression of polyglutaminemediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425−428
  83. Westerheide, S. D. and Morimoto, R. I. (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J. Biol. Chem. 280, 33097−33100
  84. Wyttenbach, A., Sauvageot, O., Carmichael, J., Diaz-Latoud, C., Arrigo, A. P., et al. (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 11, 1137−1151
  85. Xiao, L., Lu, X., and Ruden, D. M. (2006) Effectiveness of hsp90 inhibitors as anti-cancer drugs. Mini Rev. Med. Chem. 6, 1137−1143
  86. Yaglom, J., O'Callaghan-Sunol, C., Gabai, V., and Sherman, M. Y. (2003) Inactivation of dual-specificity phosphatases is involved in the regulation of extracellular signal-regulated kinases by heat shock and hsp72. Mol. Cell. Biol. 23, 3813− 3824
  87. Yang, Y., Turner, R. S., and Gaut, J. R. (1998) The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion. J. Biol. Chem. 273, 25552− 25555
  88. Young, J. C. and Hartl, F. U. (2002) Chaperones and transcriptional regulation by nuclear receptors. Nat. Struct. Biol. 9, 640−642