DOI QR코드

DOI QR Code

Comparison of Thermal Stress Induced Heat Shock Factor 1 (HSF1) in Goldfish and Mouse Hepatocyte Cultures

붕어와 마우스의 간세포 배양에서 열 스트레스에 의해 유도되는 heat shock factor1 (HSF1)의 비교

  • Kim, So-Sun (Department of Chemistry, Pusan National University) ;
  • So, Jae-Hyeong (Department of Chemistry, Pusan National University) ;
  • Park, Jang-Su (Department of Chemistry, Pusan National University)
  • Received : 2016.08.02
  • Accepted : 2016.09.01
  • Published : 2016.12.30

Abstract

Heat shock proteins (HSPs) are induced in response to various physiological or environmental stressors. However, the transcriptional activation of HSPs is regulated by a family of heat shock factors (HSFs). Fish models provide an ideal system for examining the biochemical and molecular mechanisms of adaptation to various temperatures and water environments. In this study, we examined the pattern differentials of heat shock factor 1 (HSF1) and expression of heat shock protein 70 (HSP70) in response to thermal stress in goldfish and mouse hepatocyte cultures by immune-blot analysis. Goldfish HSF1 (gfHSF1) changed from a monomer to a trimer at $33^{\circ}C$ and showed slightly at $37^{\circ}C$, whereas mouse HSF1 (mHSF1) did so at $42^{\circ}C$. This experiment showed similar results to a previous study, indicating that gfHSF1 and mHSF1 play different temperature in the stress response. We also examined the activation conditions of the purified recombinant proteins in human HSF1 (hmHSF1) and gfHSF1 using CD spectroscopy and immune-blot analysis. The purified recombinant HSF1s were treated from $25^{\circ}C$ to $42^{\circ}C$. Structural changes were observed in hmHSF1 and gfHSF1 according to the heat-treatment conditions. These results revealed that both mammal HSF1 (human and mouse HSF1) and fish HSF1 exhibited temperature-dependent changes; however, their optimal activation temperatures differed.

Heat shock proteins (HSPs)은 다양한 생리학적인 또는 환경적 스트레스에 응답하여 유도된다. 그러나 HSPs의 전사 활성은 heat shock factors (HSFs)에 의해 조절 된다. 현재 연구에서는 붕어와 마우스의 간세포 배양에서 열 스트레스에 의한 heat shock factor 1 (HSF1)의 패턴 차이와 heat shock protein 70 (HSP70)의 발현을 면역분석법을 이용하여 조사하였다. 붕어의 간세포는 $33^{\circ}C$에서 trimer를 이루지만 마우스의 간세포는 $42^{\circ}C$에서 trimer를 이루었다. 이 연구는 붕어와 마우스의 HSF1은 열 스트레스로부터 다른 온도에서 반응을 한다는 것을 보여준다. 또한 재조합 단백질을 이용하여 붕어와 인간의 HSF1의 온도에 따른 활성 조건을 CD spectroscopy와 면역분석을 이용하여 조사하였다. 이러한 결과들은 인간과 마우스 HSF1과 붕어의 HSF1은 온도에 의한 활성 변화를 보이지만 그들의 최적 활성 온도는 다르다는 것을 알 수 있다.

Keywords

References

  1. Abravaya, K., Phillips, B. and Morimoto, R. I. 1991. Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev. 5, 2117-2127. https://doi.org/10.1101/gad.5.11.2117
  2. Ahn, S. G., Liu, P. C., Klyachko, K., Morimoto, R. I. and Thiele, D. J. 2001. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev. 15, 2134-2145. https://doi.org/10.1101/gad.894801
  3. Anckar, J. and Sistonen, L. 2007. Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv. Exp. Med. Biol. 594, 78-88. https://doi.org/10.1007/978-0-387-39975-1_8
  4. Chang, Z., Lu, M., Kim, S. S. and Park, J. S. 2014. Potential role of HSP90 in mediating the interactions between estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) signaling pathways. Toxicol. Lett. 226, 6-13. https://doi.org/10.1016/j.toxlet.2014.01.032
  5. Dietz, K. J. and Scheibe, R. 2004. Redox regulation, an introduction. Physiol. Plant. 120, 1-3. https://doi.org/10.1111/j.0031-9317.2004.0277.x
  6. Dai, C., Whitesell, L., Rogers, A. B. and Lindquist, S. 2007. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005-1018. https://doi.org/10.1016/j.cell.2007.07.020
  7. Farkas, T., Kutskova, Y. A. and Zimarino, V. 1998 Intramolecular repression of mouse heat shock factor 1. Mol. Cell. Biol. 18, 906-918. https://doi.org/10.1128/MCB.18.2.906
  8. George, K., Iwama, Philip, T., Thomas, Robert, B., Forsyth, Mathilakath, M. and Vijayan. 1998. Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries 8, 35-56. https://doi.org/10.1023/A:1008812500650
  9. Hahn, J. S., Hu, Z., Thiele, D. J. and Iyer, V. R. 2004. Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol. Cell. Biol. 24, 5249-5256. https://doi.org/10.1128/MCB.24.12.5249-5256.2004
  10. Hsu, A. L., Murphy, C. T. and Kenyon, C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142-1145 https://doi.org/10.1126/science.1083701
  11. Iavicoli, I., Fontana, L. and Bergamaschi, A. 2009. The effects of metals as endocrine disruptors J. Toxicol. Environ. Health B Crit. Rev. 12, 206-223. https://doi.org/10.1080/10937400902902062
  12. Kim, S. S., Chang, Z. and Park, J. S. 2015. Identification, tissue distribution and characterization of two heat shock factors (HSFs) in goldfish (Carassius auratus). Fish Shellfish Immunol. 43, 375-386. https://doi.org/10.1016/j.fsi.2015.01.004
  13. Li, C .R., Lee, S. H., Kim, S. S., Kim, A., Lee, K. W., Lu, M., Kim, H. E., Kwak, I. J., Lee, Y. J., Lim, D. K. Lee, J. S., Kang, S. W., Huh, M. D., Chung, K. H. and Park, J. S. 2009. Environmental estrogenic effects and gonadal development in wild goldfish (Carassius auratus). Environ. Monit. Assess. 150, 397-404. https://doi.org/10.1007/s10661-008-0238-1
  14. Lu, M., Kim, H. E., Li, C. R., Kim, S., Kwak, I. J., Lee, Y. J., Kim, S. S. and Park, J. S. 2008. Two distinct disulfide bonds formed in human heat shock transcription factor 1Act in opposition to regulate its DNA binding activity. Biochemistry 47, 6007-6015. https://doi.org/10.1021/bi702185u
  15. Lu, M., Lee, Y. J., Park, S. M., Kang, H. S., Kang, S. W., Kim, S. and Park, J. S. 2009. Aromatic-participant interactions are essential for disulfide-bond-based trimerization in human heat shock transcription factor 1. Biochemistry 48, 3795-3797. https://doi.org/10.1021/bi802255c
  16. Mathew, A., Mathur, S. K., Jolly, C., Fox, S. G., Kim, S. and Morimoto, R. I. 2001. Stress-specific activation and repression of heat shock factors 1 and 2. Mol. Cell. Biol. 21, 7163-7171. https://doi.org/10.1128/MCB.21.21.7163-7171.2001
  17. McMillan, D. R., Xiao, X., Shao, L., Graves, K. and Benjamin, I. J. 1998. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J. Biol. Chem. 273, 7523-7528 https://doi.org/10.1074/jbc.273.13.7523
  18. Mendillo, M. L., Santagata, S., Koeva, M., Bell, G. W., Hu, R., Tamimi, R. M., Fraenkel, E., Ince, T. A., Whitesell, L. and Lindquist, S. 2012. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150, 549-562. https://doi.org/10.1016/j.cell.2012.06.031
  19. Morley, J. F. and Morimoto, R. I. 2004. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15, 657-664. https://doi.org/10.1091/mbc.e03-07-0532
  20. Morimoto, R. I., Tissieres, A. and Georgopoulos, C. 1994. The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press. NY, USA.
  21. Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788-3796. https://doi.org/10.1101/gad.12.24.3788
  22. Nakai, A. and Morimoto, R. I. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13, 1983-1997. https://doi.org/10.1128/MCB.13.4.1983
  23. Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R. I. and Nagata, K. 1997. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17, 469. https://doi.org/10.1128/MCB.17.1.469
  24. Pirkkala, L., Alastalo, T. P., Zuo, X., Benjamin, I. J. and Sistonen, L. 2000. Disruption of heat shock factor 1 reveals an essential role in the ubiquitin proteolytic pathway. Mol. Cell. Biol. 20, 2670-2675. https://doi.org/10.1128/MCB.20.8.2670-2675.2000
  25. Rabindran, S. K., Giorgi, G., Clos, J. and Wu, C. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88, 6906-6910. https://doi.org/10.1073/pnas.88.16.6906
  26. Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. and Wu, C. 1993. Regulation of heat shock factor trimer formation: Role of a conserved leucine zipper. Science 259, 230-234. https://doi.org/10.1126/science.8421783
  27. Sarge, K. D., Murphy, S. P. and Morimoto, R. I. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 3, 1392-1407.
  28. Sarge, K. D., Zimarino, V., Holm, K., Wu, C. and Morimoto, R. I. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5, 1902-1911. https://doi.org/10.1101/gad.5.10.1902
  29. Schuetz, T. J., Gallo, G. J., Sheldon, L., Tempst, P. and Kingston, R. E. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88, 6911-6915. https://doi.org/10.1073/pnas.88.16.6911
  30. Sun, Y. and Oberley, L. W. 1996. Redox regulation of transcriptional activators. Free Radic. Biol. Med. 21, 335-348. https://doi.org/10.1016/0891-5849(96)00109-8
  31. Trinklein, N. D., Murray, J. I., Hartman, S. J., Botstein, D. and Myers, R. M. 2004. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol. Biol. Cell. 15, 1254-1261. https://doi.org/10.1091/mbc.e03-10-0738
  32. Vihervaara, A., Sergelius, C., Vasara, J., Blom, M. A. H., Elsing, A. N., Roos-Mattjus, P. and Sistonen, L. 2013. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc. Natl. Acad. Sci. USA 110, 3388-3397. https://doi.org/10.1073/pnas.1305275110
  33. Voellmy, R. 2004. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9, 122-133. https://doi.org/10.1379/CSC-14R.1
  34. Wu, B. J., Kingston, R. E. and Morimoto, R. I. 1986. Human HSP70 promoter contains at least two distinct regulatory domains. Proc. Natl. Acad. Sci. USA 83, 629-633. https://doi.org/10.1073/pnas.83.3.629
  35. Xiao, X., Zuo, X., Davis, A. A., McMillan, D. R., Curry, B. B., Richardson, J. A. and Benjamin, I. J. 1999. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 18, 5943-5952 https://doi.org/10.1093/emboj/18.21.5943
  36. Yamashita, M., Hirayoshi, K. and Nagata, K. 2004. Characte rization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene 336, 207-218. https://doi.org/10.1016/j.gene.2004.04.023
  37. Zuo, J., Baler, R., Dahl, G. and Voellmy, R. 1994. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14, 7557-7568. https://doi.org/10.1128/MCB.14.11.7557