• Title/Summary/Keyword: heat curing

Search Result 455, Processing Time 0.026 seconds

The temperature distributions of the curing space according to blocking the opening of gang-form at the apartment in the cold weather (동절기 공동주택 갱폼 개구부 천막보양에 따른 보양 온도 분포 분석)

  • Cho, Hong-Bum;Song, Jin-Hee;Kim, Young-Sun;Choi, Ji-Su;Lee, Kyu-Nam
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.140-141
    • /
    • 2022
  • CFD analysis was performed to analyze the temperature distribution of the inner space of the curing house according to blocking the opening of the gang-form with a tent in case of concrete pouring and heat curing of the apartment house during the winter season. If the gang-form opening is closed with a tent during internal heating using a hot air blower in the winter, the internal temperature rises compared to the non-reserved due to air-tightness of the curing spaces, and uniform temperature distribution can be ensured. In addition, it is possible to increase curing efficiency by reducing the amount of heat supplied and shortening the heating time.

  • PDF

THE CHANGES IN DEGREE OF CONVERSION OF COMPOSITE RESINS AFTER ADDITIONAL HEAT CURING (수종 복합레진의 추가적인 열중합 후의 중합률 변화)

  • Park, Seong-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.827-831
    • /
    • 1995
  • This study was designed to etermine the changes in the degree of conversion for composite resins after heat curing following the methods proposed by Lee & Park(1995). 8-mm diameter hole was made in 1mm teflon plate and one of three types of composites (Charisma, Brilllant, Z100) was placed and light cured for 60seconds. The samples were devided into 3 groups according to the placing composites. After light curing, the samples were separated from the moulds. Using this method, 10 samples were prepared in each group; 5 samples from each group were heat cured according to the methods proposed by manutfactures, These samples were then thinned to 50-$70{\mu}m$ and analysed with a Fourier Transform Infrared Spectrometer. Standard baseline technique was used to calculate the degree of conversion. When the samples were light cured, the degrees of conversion in each groups were 47.1 % (charisma), 53.3% (Z100), and 70.1 % (Brilliant). The degree of conversion after heat curing were; 60.1 % (Charisma), 71.1 % (Z100), and 73.3 % (Brillant). Once the samples were heat cured, there were significant increases in degree of conversion.

  • PDF

Solar Energy Utilization in a Greenhouse Bulk Curing and Drying System(I) (Greenhouse Bulk건조기에 의한 태양열이용에 관한 연구 (제I보))

  • 진정의;이승철;이상하
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1980
  • The greenhouse hulk curing and drying system utilizing the direct solar energy was tested to see how much fuel could be saved for curing flue-cured tobacco at the Daegu Experiment Station, Korea Tobacco Research Institute (North latitute: 35$^{\circ}$49'), in 1979. The structure consists of transparent fiberglass exterior, polyurethan boards covered with galvanized iron as the heat absorbers and insulation boards, air duct in which the air is introduced to the furnace room of bulk curing barn, and gravel heat storage system. All exterior surface of heat absorbers, air duct, and gravels were coated with black paint. The air temperature and total radiation were 20.5 to 35.5$^{\circ}C$ and 1004.2 to 1436.2 cal/$\textrm{cm}^2$ during the 3 replicated curing tests, respectively. The greenhouse bulk curing and drying system was able to cut fuel consumption by 25 percent compared with the conventional bulk curing barn. The maximum temperatures for the top absorber and the inlet air of the system were 89$^{\circ}C$ and 64$^{\circ}C$, respectively, and the average temperature of inlet air was higher than that of conventional one by 18$^{\circ}C$.

  • PDF

The Effect of Heat Curing Methods on the Temperature History of the Fly Ash Concrete Subjected to Extremely Low Temperature (복합보온양생 방법이 극저온 조건하 플라이애시 치환 콘크리트의 온도이력에 미치는 영향)

  • Han, Min-Cheol;Son, Ho-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • In this study, temperature profile of the fly ash concrete were studied in accordance with the change of heating curing method combination for the slab concrete in order to develop efficient protection method of the concrete subjected to $-20^{\circ}C$. The slab concretes with the size of $1200mm{\times}600mm{\times}200mm$ were fabricated with W/B of 50% and exposed to $-20^{\circ}C$ for 7 days. Five different combinations of heat curing methods were applied to the slab concrete specimen; two combinations of heat supplying by electrical heater and surface heat insulation material such as polyethylene film and quadrupled layer bubble sheet based on heat enclosure installment; three combinations of heating coil embedment and surface heat insulation materials such as polyethylene film, sawdust and quadrupled layer bubble sheet based on heat enclosure installment. Test results showed that by applying both heating coil and bubble sheet and heat enclosure, the concrete exposed to $-20^{\circ}C$ can be effectively protected from early-age frost damage.

  • PDF

Field Application of Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather (이중버블시트를 이용한 단열양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Baek, Dae-Hyun;Kim, Jong;Jeon, Chung-Kun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and 15℃ even in case outside temperature drops -9℃ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than 4℃, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

A study on the change of physical properties of elastomer in high temperature curing (고온가황에 의한 탄성체의 물성변화에 관한 연구)

  • Lee, Jeung-Ho
    • Elastomers and Composites
    • /
    • v.19 no.3
    • /
    • pp.163-177
    • /
    • 1984
  • The effect of curing temperature increase and sulfur amount added were studied with natural and synthetic rubbers. Also, the effects of TMTD, MBTS and mixture of zinc soaps of high molecular fatty acids added to natural rubber were investigated respectively. The experimental results showed that, in the case of the conventional curing ($145^{\circ}C$), natural rubber, compared with synthetic rubber, gave higher values in elongation, tensile strength, cure rate, and lower values in modulus change. But, at high temperature curing ($180^{\circ}C$), natural rubber showed faster reversion rate, and higher heat build-up compared to synthetic rubber, than in the conventional curing. Also, natural rubber produced at high temperature showed severe degradation in hardness and tensile strength before heat-aging as well as in hardness, modulus and tensile strength after heat-aging. Improved reversion effect was obtained with natural rubber either by blending mixture of zinc soaps of high molecular acids or by applying semi-efficient vulcanization system.

  • PDF

THE RELATIVE DEGREE OF CONVERSION OF THE COMPOSITE RESIN SURFACE (복합레진 표면의 중합률)

  • Park, Seong-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.360-365
    • /
    • 1996
  • The purpose of this study was to evaluate the changes in the degree of conversion on a composite resin surface following heat treatment and mylar strip finishing. The effects of the time interval between the light-curing and heat-curing process were also evaluated. The composite resin surface which had been covered with a coverglass showed a lower conversion rate than the surface from which a layer of $500{\mu}m$ was ground away. The composite resin surface was definitely affected by oxygen during the heat curing process when it had not been insulated. When the composite resins were heat cured after 3 days of storage following the light curing process, the increased in the degree of conversion through heatcuring was limited.

  • PDF

Value Engineering Approach for Heat Curing Method Under Cold Weather Condition (한중콘크리트 보온양생 공법에 대한 VE분석)

  • Woo, Dae-Hun;Kim, Tae-Cheong;Kim, Jong;Jeon, Chung-Keun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.21-23
    • /
    • 2010
  • This study was conducted to draw various decisive elements of a reasonable heat curing method and to examine the importance in deciding a construction method when constructing cold weather concrete. As a result, the items proposed as important elements at the time of decision of a heat curing method included economy, workability, maintainability, insulation capability, reduced construction period and usability. As a result of importance by items under AHP technique, it was found the most important element was insulation capability, followed by reduced construction period and workability. As a result of comparison of a heat supplying and a heat insulation method by dual bubble sheet differed 2 times as much as a heat supplying method, especially the evaluation degree by insulation capability and reduced construction period was high.

  • PDF

Comparison of Standard Specification for the Curing of Cold Weather between Korea and China (한국과 중국의 한중 콘크리트 표준시방서의 보온양생 규정 비교)

  • Hu, Yun-Yao;Jeong, Jun-Taek;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.131-132
    • /
    • 2023
  • In this paper, standard specification of heat curing section of cold weather concrete between Korea and China were compared. First, Korea concrete specification (KCS 14 20 40) stipulates that the application period is less than 4℃ per day or less than 0℃ per day right after pouring, but in China, the outdoor daily average temperature is less than 5℃ for five consecutive days. This is believed to be due to the difference in temperatures between Korea and China in winter. Next, in the case of Korea, KCS do not show that the concrete temperature in curing should be 5℃ or higher to prevent early frost damage and obtain the minimum required compressive strength. On the other hand, in the case of China, the specificaion does not show that the curing method is selected based on the concrete surface coefficient after considering the outdoor temperature. In addition, in Korea and China regulation, the temperature of the space during thermal curing was shown to be similar.

  • PDF

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.