• Title/Summary/Keyword: heat conductivity coefficient

Search Result 167, Processing Time 0.025 seconds

Changes in the Thermal Conductivity of Organic Insulators over Time (유기질 단열재 열전도율의 경시 변화)

  • Kim, Hae-Na;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.219-220
    • /
    • 2023
  • The thermal conductivity of the insulation material has a great influence on the heat transmission coefficient, which is currently used for energy evaluation of buildings. The thermal conductivity of insulation changes with changes in the environment, such as humidity and ultraviolet rays, and can be expected to with the passage of time. But there is a lack of data on this, so this study measured the thermal conductivity of organic insulation according to environmental conditions and time, As a result, in the case of XPS, the thermal conductivity value increased over time, which is estimated to be due to the decrease in insulation performance as the foaming gas escapes to the outside, and in the case of PIR class2 No.2 and PIR noncombustible, the increased thermal conductivity value is similar, but in the case of PIR class2 No.2, a relatively moderate increase can be seen, and in the case of PIR noncombustible, a large increase is seen at the beginning, which is judged to be due to the decrease in insulation performance as the internal foaming gas is substituted with air from the outside.

  • PDF

Development of Heat Transfer Predicting Model for Cold forging Steel(SCr420) During Quenching Process (냉간 단조용 SCr420 강의 퀜칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.68-71
    • /
    • 2003
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process. Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

  • PDF

An Analysis for Predicting the Thermal Performance of Fin-Tube Heat Exchanger under Frosting Condition (착상시 핀-관 열교환기의 열적 성능 예측을 위한 해석)

  • Lee, T.H.;Lee, K.S.;Kim, W.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.299-306
    • /
    • 1996
  • This work presents an analytical model, so called modified LMTD method, to predict the thermal performance of finned-tube heat exchanger under frosting conditions. In this model, the total heat transfer coefficient and effective thermal conductivity of the frost layer were defined as a function of frost surface temperature. The surface temperature of the frost layer formed on the heat exchanger was calculated through the analysis of the heat and mass transfer process in the air and frost layer. To examine the validity of this analytical model, the computed results from the present model, such as heat transfer rate, frost mass and thickness of frost, were compared with the ones of the expermental work and LMED method.

  • PDF

Development of Heat Transfer Predicting Model for Cold forging Steel(SCM420) During Quenching Process (냉간 단조용 SCM420 강의 ?칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;김정민;강성수
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.441-448
    • /
    • 2004
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process, Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

Effect of nanoparticle material for heat transfer enhancement (열전달 향상을 위한 나노물질 코팅재료의 영향에 대한 연구)

  • Jeon, Yong-Han;Kim, Nam-Jin
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • Nucleate boiling heat transfer is one of the most important phenomenon in the various industries. Especially, critical heat flux (CHF) refers to the upper limit of the pool boiling heat transfer region. Therefore, many researchers have found that CHF can be significantly increased by adding very small amounts of nanoparticles. In this study, the CHF and heat transfer coefficient were tested under the pool boiling state using copper and multi wall carbon nanotube nanoparticles. The results showed that two different types of nanoparticles deposited on the surface of two specimens made of the same material increased the heat flux in the nanoparticles with high conductivity, and there was no difference in the critical heat flux when the same material nanoparticles were deposited on the two different specimen surfaces.

Study on cement-based grout for closed-loop vertical ground heat exchanger (수직 밀폐형 지중 열교환기 뒤채움재로서 시멘트 그라우트의 적용성 검토)

  • Park, Moon-Seo;Wi, Ji-Hae;Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.615-624
    • /
    • 2010
  • In this paper, the applicability of cement grout has been studied as an alternative to bentontite grout to backfill ground heat exchangers. To provide an optimal mixture design, the groutabilty and thermal conductivity of cement grouts with various mixture ratios were experimentally evaluated and compared. The unconfined compression strength of cement grout specimen was measured, which are exposed to cyclic temperature variation ranging from $50^{\circ}C$ to $-5^{\circ}C$. In addition, the integrity of the interface between circulating HDPE pipes and cement grout by performing equivalent hydraulic conductivity tests, in which a pipe locates at the center of the specimen.

  • PDF

Evaluation of Thermal Behavior of Oil-based Nanofluids using Ceramic Nanoparticles (세라믹 분말을 이용한 오일 기지 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.587-593
    • /
    • 2007
  • Oil-based nanofluids were prepared by dispersing spherical and fiber shaped $Al_2O_3$ and AlN nanoparticles in transformer oil. Two hydrophobic surface modification processes using oleic acid (OA) and polyoxyethylene alkyl acid ester (PAAE) were compared in this study. The dispersion stability, viscosity and breakdown voltage of the nanofluids were also characterized. $(Al_2O_3+AlN)$ mixed nanofluid was prepared to take an advantage of the excellent thermal conductivity of AlN and a good convective heat transfer property of fiber shaped $Al_2O_3$. For $(Al_2O_3+AlN)$ particles with 1 % volume fraction in oil, the enhancement of thermal conductivity and convective heat transfer coefficient was nearly 11 % and 30 %, respectively, compared to pure transformer oil. The nanofluid, containing $Al_2O_3+AlN$, successfully lowered the temperature of the heating element and oil itself during a natural convection test using a prototype transformer.

INFLUENCE OF THERMAL CONDUCTIVITY AND VARIABLE VISCOSITY ON THE FLOW OF A MICROPOLAR FLUID PAST A CONTINUOUSLY MOVING PLATE WITH SUCTION OR INJECTION

  • Salem, A.M.;Odda, S.N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.45-53
    • /
    • 2005
  • This paper investigates the influence of thermal conductivity and variable viscosity on the problem of micropolar fluid in the presence of suction or injection. The fluid viscosity is assumed to vary as an exponential function of temperature and the thermal conductivity is assumed to vary as a linear function of temperature. The governing fundamental equations are approximated by a system of nonlinear ordinary differential equations and are solved numerically by using shooting method. Numerical results are presented for the distribution of velocity, microrotation and temperature profiles within the boundary layer. Results for the details of the velocity, angular velocity and temperature fields as well as the friction coefficient, couple stress and heat transfer rate have been presented.

  • PDF

THERMAL CONDUCTION IN MAGNETIZED TURBULENT GAS

  • CHO JUNGYEON;LAZARIAN A.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.557-562
    • /
    • 2004
  • We discuss diffusion of particles in turbulent flows. In hydrodynamic turbulence, it is well known that distance between two particles imbedded in a turbulent flow exhibits a random walk behavior. The corresponding diffusion coefficient is ${\~}$ ${\upsilon}_{inj}{\iota}_{turb}$, where ${\upsilon}_{inj}$ is the amplitude of the turbulent velocity and ${\iota}_{turb}$ is the scale of the turbulent motions. It Is not clear whether or not we can use a similar expression for magnetohydrodynamic turbulence. However, numerical simulations show that mixing motions perpendicular to the local magnetic field are, up to high degree, hydrodynamical. This suggests that turbulent heat transport in magnetized turbulent fluid should be similar to that in non-magnetized one, which should have a diffusion coefficient ${\upsilon}_{inj}{\iota}_{turb}$. We review numerical simulations that support this conclusion. The application of this idea to thermal conductivity in clusters of galaxies shows that this mechanism may dominate the diffusion of heat and may be efficient enough to prevent cooling flow formation when turbulence is vigorous.

Time-dependent Analysis of High Strength Concrete Using Material Characteristics Model (물성치 모델개발을 통한 고강도콘크리트의 시간의존 해석)

  • Lee, Tae-Gyu;Kim, Hye-Uk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1096-1101
    • /
    • 2008
  • Concrete is shown the time dependent behavior after placing. The time dependent behavior of normal strength concrete that is used usually in present, were already examined closely lots of parameters by several investigators. however, high strength concrete is that the material characteristics are not definite and the experimental data are lacking. So, The goal of this study is to propose the material characteristics models, and to develop the routine of the time dependent behavior above 60 MPa. The thermal conductivity, the specific heat, the moisture diffusion coefficient, and the surface coefficient are proposed the suitable models through the parametric study. The structural element is used the 8-node solid element. The matrix equation is developed considering the transient heat transfer and moisture diffusion theory. The application of the time dependent behavior is used the finite differential method.

  • PDF