DOI QR코드

DOI QR Code

THERMAL CONDUCTION IN MAGNETIZED TURBULENT GAS

  • CHO JUNGYEON (Department of Astronomy & Space Science, Chungnam National University) ;
  • LAZARIAN A. (Department of Astronomy, U. of Wisconsin)
  • Published : 2004.12.01

Abstract

We discuss diffusion of particles in turbulent flows. In hydrodynamic turbulence, it is well known that distance between two particles imbedded in a turbulent flow exhibits a random walk behavior. The corresponding diffusion coefficient is ${\~}$ ${\upsilon}_{inj}{\iota}_{turb}$, where ${\upsilon}_{inj}$ is the amplitude of the turbulent velocity and ${\iota}_{turb}$ is the scale of the turbulent motions. It Is not clear whether or not we can use a similar expression for magnetohydrodynamic turbulence. However, numerical simulations show that mixing motions perpendicular to the local magnetic field are, up to high degree, hydrodynamical. This suggests that turbulent heat transport in magnetized turbulent fluid should be similar to that in non-magnetized one, which should have a diffusion coefficient ${\upsilon}_{inj}{\iota}_{turb}$. We review numerical simulations that support this conclusion. The application of this idea to thermal conductivity in clusters of galaxies shows that this mechanism may dominate the diffusion of heat and may be efficient enough to prevent cooling flow formation when turbulence is vigorous.

Keywords

References

  1. Begelman, M. & Fabian, A. 1990, MNRAS, 244, 26
  2. Berghofer, T. W., Bowyer, S., Lieu, R., & Knude, J. 1998, ApJ, 500, 838 https://doi.org/10.1086/305745
  3. Boffetta, G., Sokolov, I. 2002, Phy. Rev. Lett., 88(9), 094501
  4. Cho, J., Lazarian, A., Vishniac, E. 2002, ApJ, 564, 291 https://doi.org/10.1086/324186
  5. Cho, J., Lazarian, A., Honein, A., Knaepen, B., Kassinos, S., & Moin, P. 2003, ApJ, 589, L77 https://doi.org/10.1086/376492
  6. Fabian, A. C. 1994, ARA&A, 32, 277 https://doi.org/10.1146/annurev.aa.32.090194.001425
  7. Fabian, A. C., Mushotzky, R. F., Nulsen, P. E. J., & Peterson, J. R. 2001, MNRAS, 321, L20 https://doi.org/10.1046/j.1365-8711.2001.04285.x
  8. Goldreich, P. & Sridhar, S. 1995, ApJ, 438, 763 https://doi.org/10.1086/175121
  9. Hall, J. 1949, Science, 109, 166 https://doi.org/10.1126/science.109.2825.166
  10. Hiltner, W. 1949, Science, 109, 471
  11. Ishihara, T. & Kaneda, Y. 2001, APS, DFD01, BCOO1
  12. Jiang, G. & Wu, C. 1999, J. Compo Phys., 150, 561 https://doi.org/10.1006/jcph.1999.6207
  13. Kim, K., Kronberg, P., Giovannini, G., & Venturi, T. 1989, Nature, 341, 720 https://doi.org/10.1038/341720a0
  14. Lazarian, A. & Vishniac, E. T. 1999, ApJ, 517, 700 https://doi.org/10.1086/307233
  15. Lesieur, M. 1990, Turbulence in fluids: stochastic and numerical modelling, 2nd. rev. ed. (Dordrecht; Kluwer Academic Publishers)
  16. Liu, X. & Osher, S. 1998 J. Compo Phys., 141, 1 https://doi.org/10.1006/jcph.1998.5900
  17. Maron, J. & Goldreich, P. 2001, ApJ, 554,1175 https://doi.org/10.1086/321413
  18. Muller, W.-C. & BiskamP, D. 2000, Phys. Rev. Lett., 84(3)475 https://doi.org/10.1103/PhysRevLett.84.475
  19. Narayan, R., & Medvedev M. V. 2001, ApJ, 562, L129 https://doi.org/10.1086/338325
  20. Politano, H. & Pouquet, A., 1995, Phys. Rev. E, Vol. 52, No.1,636 https://doi.org/10.1103/PhysRevE.52.636
  21. Richardson, L. F. 1926, Proc. R. Soc. London, Ser. A, 110, 709 https://doi.org/10.1098/rspa.1926.0043
  22. She, Z.-S. & Leveque, E. 1994, Phys. Rev. Lett., 72(3), 336 https://doi.org/10.1103/PhysRevLett.72.336
  23. Smith, R. & Cox, D. 2001, ApJS, 134, 283 https://doi.org/10.1086/320850
  24. Spitzer, L. 1962, Physics of Fully Ionized Gases (New York: Interscience)
  25. Zakamska, N. L, & Narayan, R. 2002, astro-ph/0207127

Cited by

  1. Thermal Balance in the Intracluster Medium: Is AGN Feedback Necessary? vol.681, pp.1, 2008, https://doi.org/10.1086/587861
  2. Reconnection Diffusion in Turbulent Fluids and Its Implications for Star Formation vol.181, pp.1-4, 2014, https://doi.org/10.1007/s11214-013-0031-5
  3. Hot Accretion with Conduction: Spontaneous Thermal Outflows vol.649, pp.1, 2006, https://doi.org/10.1086/506442
  4. EFFECT OF HELIUM SEDIMENTATION ON X-RAY MEASUREMENTS OF GALAXY CLUSTERS vol.693, pp.1, 2009, https://doi.org/10.1088/0004-637X/693/1/839
  5. The Effects of Thermal Conduction on Radiatively Inefficient Accretion Flows vol.660, pp.2, 2007, https://doi.org/10.1086/513065
  6. Astrophysical Hydromagnetic Turbulence vol.178, pp.2-4, 2013, https://doi.org/10.1007/s11214-013-0009-3
  7. X-ray spectroscopy of cooling clusters vol.427, pp.1, 2006, https://doi.org/10.1016/j.physrep.2005.12.007
  8. On the treatment of entropy mixing in numerical cosmology vol.387, pp.1, 2008, https://doi.org/10.1111/j.1365-2966.2008.13260.x