• Title/Summary/Keyword: clusters of galaxies

Search Result 346, Processing Time 0.021 seconds

ON THE FORMATION OF GIANT ELLIPTICAL GALAXIES AND GLOBULAR CLUSTERS

  • LEE MYUNG GYOON
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.189-212
    • /
    • 2003
  • I review the current status of understanding when, how long, and how giant elliptical galaxies formed, focusing on the globular clusters. Several observational evidences show that massive elliptical galaxies formed at z > 2 (> 10 Gyr ago). Giant elliptical galaxies show mostly a bimodal color distribution of globular clusters, indicating a factor of $\approx$ 20 metallicity difference between the two peaks. The red globular clusters (RGCs) are closely related with the stellar halo in color and spatial distribution, while the blue globular clusters (BGCs) are not. The ratio of the number of the RGCs and that of the BGCs varies depending on galaxies. It is concluded that the BGCs might have formed 12-13 Gyr ago, while the RGCs and giant elliptical galaxies might have formed similarly 10-11 Gyr ago. It remains now to explain the existence of a gap between the RGC formation epoch and the BGC formation epoch, and the rapid metallicity increase during the gap (${\Delta}t{\approx}$ 2 Gyr). If hierarchical merging can form a significant number of giant elliptical galaxies > 10 Gyr ago, several observational constraints from stars and globular clusters in elliptical galaxies can be explained.

A GMOS/IFU Study of Enhanced Star Formation Activity of Jellyfish Galaxies in Massive Galaxy Clusters

  • Lee, Jeong Hwan;Lee, Myung Gyoon;Kang, Jisu;Cho, Brian S.;Mun, Jae Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2021
  • Ram-pressure stripping (RPS) is known as a typical mechanism of quenching star formation (SF) of galaxies orbiting in clusters, but it can also boost the SF activity within a short period of time. Jellyfish galaxies, with eye-catching blue tails and knots, are such starburst galaxies undergoing strong RPS in galaxy clusters. Thus, they are very useful targets to understand their SF activity in relation to RPS. We study the SF activity of three jellyfish galaxies in massive clusters at z=0.3-0.4 (MACSJ1752-JFG2, MACSJ0916-JFG1, and A2744-F0083) with Gemini GMOS/IFU and compare our results to those of jellyfish galaxies in low-mass clusters. We obtain total star formation rates (SFRs) of up to 60 Mo/yr and SFRs in the tails of up to 15 Mo/yr, which are much higher than those of jellyfish galaxies in low-mass clusters with the median SFRs of 1.1 Mo/yr in total and 0.03 Mo/yr in tails. In addition, these SFRs are also significantly higher than the SF main sequence of galaxies at the redshifts of the three jellyfish galaxies. This implies that their SF activity is much more enhanced compared to jellyfish galaxies in low-mass clusters due to extreme RPS in massive clusters.

  • PDF

Mapping the Star Formation Activity of Five Jellyfish Galaxies in Massive Galaxy Clusters with GMOS/IFU

  • Lee, Jeong Hwan;Lee, Myung Gyoon;Mun, Jae Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.43.2-43.2
    • /
    • 2021
  • Ram-pressure stripping (RPS) is known as the main driver of quenching the star formation (SF) activity in cluster galaxies. However, galaxies undergoing RPS in galaxy clusters often show blue star-forming knots in their disturbed disks and tails. The existence of these "jellyfish galaxies" implies that RPS can temporarily boost the SF activity of cluster galaxies. Thus, jellyfish galaxies are very unique and interesting targets to study the influence of RPS on their SF activity, in particular with integral field spectroscopy (IFS). While there have been many IFS studies of jellyfish galaxies in low-mass clusters (e.g., the GASP survey), IFS studies of those in massive clusters have been lacking. We present an IFS study of five jellyfish galaxies in massive clusters at intermediate redshifts using the Gemini GMOS/IFU. Their star formation rates (SFRs) are estimated to be up to 15 Mo/yr in the tails and 50 Mo/yr in the disks. These SFRs are by a factor of 10 higher than those of star-forming galaxies on the main sequence in the M*-SFR relation at similar redshifts. Our results suggest that the SF activity of jellyfish galaxies tends to be more enhanced in massive clusters than in low-mass clusters. This implies that strong RPS in massive clusters can trigger strong starbursts.

  • PDF

GROUND-BASED NEAR-INFRARED CENSUS FOR YOUNG STAR CLUSTERS IN THE DWARF STARBURST GALAXY NGC 1569

  • Kyeong, Jae-Mann;Sung, Eon-Chang;Kim, Sang-Chul;Chaboyer, Brian
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • JHK near-infrared photometry of star clusters in the dwarf irregular/dwarf starburst galaxy NGC 1569 are presented. After adopting several criteria to exclude other sources (foreground stars, background galaxies, etc.), 154 candidates of star clusters are identified in the near-infrared images of NGC 1569, which include very young star clusters. Especially, from analysis based on theoretical background, we found ten very young star clusters near the center of NGC 1569. The total reddening values toward these clusters are estimated to be $A_V$=1-9 mag from comparison with the theoretical estimates given by the Leitherer et al. (1999)'s star cluster model.

A PHOTOMETRIC STUDY ON THE FORMATION OF THE EARLY TYPE GALAXIES IN NEARBY GALAXY CLUSTERS

  • KIM TAEHYUN;LEE MYUNG GYOON
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.145-148
    • /
    • 2005
  • We present a photometric study of galaxies in the central regions of six nearby galaxy clusters at redshift z=0.0231${\~}$0.0951. We have derived BVI photometry of the galaxies from the CCD images obtained at the Bohyunsan Optical Astronomical Observatory (BOAO) in Korea, and JHKs photometry of the bright galaxies from the 2MASS extended source catalog. Comparing the galaxy photometry results with the simple stellar population model of Bruzual & Charlot (2003) in the optical & NIR color-color diagrams, we have estimated the ages and metallicities of early type galaxies. We have found that the observed galaxies had recent star-formation mostly 5 ${\~}$ 7 Gyrs ago but the spread in age estimation is rather large. The average metallicities are [Fe/H]=0.l${\~}$0.5 dex. These results support the hypothesis that large early type galaxies in clusters are formed via hierarchical merging of smaller galaxies.

A GMOS/IFU Spectroscopic Mapping of Jellyfish Galaxies in Extremely Massive Galaxy Clusters

  • Lee, Jeong Hwan;Lee, Myung Gyoon;Kang, Jisu;Cho, Brian S.;Mun, Jae Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.32.3-33
    • /
    • 2020
  • Jellyfish galaxies show spectacular features such as star-forming knots and tails due to strong ram-pressure stripping in galaxy clusters. Thus, jellyfish galaxies are very useful targets to investigate the effects of ram-pressure stripping on the star formation activity in galaxies. Integral field spectroscopy (IFS) studies are the best way to study star formation in jellyfish galaxies, but they have been limited to those in low-mass galaxy clusters until now. In this study, we present a Gemini GMOS/IFU study of three jellyfish galaxies in very massive clusters (M_200 > 10^15 Mo). The host clusters (Abell 2744, MACSJ0916.1-0023, and MACSJ1752.0+4440) are X-ray luminous and dynamically unstable, suggesting that ram-pressure stripping in these clusters is much stronger than in low-mass clusters. We present preliminary results of star formation rates, kinematics, dynamical states, and ionization mechanisms of our sample galaxies and discuss how ram-pressure stripping relates with the star formation activity of jellyfish galaxies in massive clusters.

  • PDF

Proper motion and physical parameters of the two open clusters NGC 1907 and NGC 1912

  • Lee, Sang Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.59.4-60
    • /
    • 2018
  • Ultra-diffuse galaxies (UDGs) are an unusual galaxy population. They are ghostlike galaxies with fainter surface brightness than normal dwarf galaxies, but they are as large as MW-like galaxies. The key question on UDGs is whether they are 'failed' giant galaxies or 'extended' dwarf galaxies. To answer this question, we study UDGs in massive galaxy clusters. We find an amount of UDGs in deep HST images of three Hubble Frontier Fields clusters, Abell 2744 (z=0.308), Abell S1063 (z=0.347), and Abell 370 (z=0.374). These clusters are the farthest and most massive galaxy clusters in which UDGs have been discovered until now. The color-magnitude relations show that most UDGs have old stellar population with red colors, while a few of them show bluer colors implying the existence of young stars. The stellar masses of UDGs show that they have less massive stellar components than the bright red sequence galaxies. The radial number density profiles of UDGs exhibit a drop in the central region of clusters, suggesting some of them were disrupted by strong gravitational potential. Their spatial distributions are not homogeneous, which implies UDGs are not virialized enough in the clusters. With virial masses of UDGs estimated from the fundamental manifold, most UDGs have M_200 = 10^10 - 10^11 M_Sun indicating that they are dwarf galaxies. However, a few of UDGs more massive than 10^11 M_Sun indicate that they are close to failed giant galaxies.

  • PDF

NEAR-INFRARED PHOTOMETRY OF THE STAR CLUSTERS IN THE DWARF IRREGULAR GALAXY IC 5152

  • Kyeong, Jae-Mann;Sung, Eon-Chang;Kim, Sang-Chul;Sohn, Sang-Mo Tony;Sung, Hyun-Il
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.89-94
    • /
    • 2006
  • We present JHK-band near-infrared photometry of the star clusters in the dwarf irregular galaxy IC 5152. After excluding possible foreground stars, a number of candidate star clusters are identified in the near-infrared images of IC 5152, which include young populations. Especially, five young star clusters are identified in the(J-H, H-K) two color diagram and the total extinction values toward these clusters are estimated to be $A_v=2-6$ from the comparison with the theoretical values given by the Leitherer et al.(1999)'s theoretical star cluster model.

On the origin of gas deficient galaxies in galaxy clusters: insights from cosmological hydrodynamic simulations

  • Jung, Seoyoung;Choi, Hoseung;Wong, O. Ivy;Kimm, Taysun;Chung, Aeree;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.33.2-34
    • /
    • 2018
  • Galaxies associated with massive groups/clusters are normally gas deficient in contrast to field galaxies. HI observations on such galaxies have revealed signs of violent gas stripping, the direct evidence of the environmental effect. At the same time, the notable number of passive galaxies at the cluster outskirts indicates the presence of pre-processing that makes galaxies gas-poor before entering clusters. We investigate the possible channels for the production of the gas deficient galaxies using the state-of-the-art cosmological hydrodynamic zoom-in simulations of 16 clusters (Choi&Yi). We find cluster effect and pre-processing together play an important role in producing the gas-poor galaxies and in both cases gas loss qualitatively agrees with the ram pressure stripping description. Among the currently gas-poor cluster galaxies, 34% are pre-processed before the cluster infall. They are mainly satellites that have undergone ram pressure stripping in group halos. 43% deplete quickly after arriving at cluster during their first approach to the center. Some of them are group halo satellites low in the gas at the infall compared to galaxies directly coming from the field. 24% retain gas even after their first pericentric pass mainly because they are falling into low mass clusters and/or they have a circular orbit that minimizes the ram pressure effect. This study highlights the importance of the past history of galaxies, especially in group halos, before joining the current cluster when understanding the excess of passive galaxies in clusters.

  • PDF

Revealing Natures of Ultra-diffuse Galaxies: Failed Giant Galaxies or Dwarf Galaxies?

  • Lee, Jeong Hwan;Kang, Jisu;Lee, Myung Gyoon;Jang, In Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.39.3-40
    • /
    • 2017
  • Ultra-diffuse galaxies (UDGs) are an unusual galaxy population. They are ghostlike galaxies with fainter surface brightness than normal dwarf galaxies, but they are as large as MW-like galaxies. The key question on UDGs is whether they are 'failed' giant galaxies or 'extended' dwarf galaxies. To answer this question, we study UDGs in massive galaxy clusters. We find an amount of UDGs in deep HST images of three Hubble Frontier Fields clusters, Abell 2744 (z=0.308), Abell S1063 (z=0.347), and Abell 370 (z=0.374). These clusters are the farthest and most massive galaxy clusters in which UDGs have been discovered until now. The color-magnitude relations show that most UDGs have old stellar population with red colors, while a few of them show bluer colors implying the existence of young stars. The stellar masses of UDGs show that they have less massive stellar components than the bright red sequence galaxies. The radial number density profiles of UDGs exhibit a drop in the central region of clusters, suggesting some of them were disrupted by strong gravitational potential. Their spatial distributions are not homogeneous, which implies UDGs are not virialized enough in the clusters. With virial masses of UDGs estimated from the fundamental manifold, most UDGs have M_200 = 10^10 - 10^11 M_Sun indicating that they are dwarf galaxies. However, a few of UDGs more massive than 10^11 M_Sun indicate that they are close to failed giant galaxies.

  • PDF