• Title/Summary/Keyword: heat and irradiation

Search Result 363, Processing Time 0.027 seconds

Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor

  • Ma, Yugao;Liu, Jiusong;Yu, Hongxing;Tian, Changqing;Huang, Shanfang;Deng, Jian;Chai, Xiaoming;Liu, Yu;He, Xiaoqiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2094-2106
    • /
    • 2022
  • The solid-state core of a heat pipe cooled reactor operates at high temperatures over 1000 K with thermal and irradiation-induced expansion during burnup. The expansion changes the gap thickness between the solid components and the material properties, and may even cause the gap closure, which then significantly influences the thermal and mechanical characteristics of the reactor core. This study developed an irradiation behavior model for HPRTRAN, a heat pipe reactor system analysis code, to introduce the irradiation effects such as swelling and creep. The megawatt heat pipe reactor MegaPower was chosen as an application case. The coupled irradiation-thermal-mechanical model was developed to simulate the irradiation effects on the heat transfer and stresses of the whole reactor core. The results show that the irradiation deformation effect is significant, with the irradiation-induced strains up to 2.82% for fuel and 0.30% for monolith at the end of the reactor lifetime. The peak temperatures during the lifetime are 1027:3 K for the fuel and 956:2 K for monolith. The gap closure enhances the heat transfer but caused high stresses exceeding the yield strength in the monolith.

Characteristics of Heat Shrinkable High Density Polyethylene Crosslinked by ${\gamma}$-Irradiation

  • Kang, Phil-Hyun;Nho, Young-Chang
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.184-191
    • /
    • 2001
  • The effects of ${\gamma}$-irradiation on the crosslinking of high density polyethylene (HDPE) was investigated for the purpose of obtaining a suitable formulation for heat shrinkable materials. In this study the HDPE specimens were prepared by blending with cross linking agents and pressed into a 0.2 mm sheet at 18$0^{\circ}C$. ${\gamma}$-irradiation was conducted at 40 to 100 kGy in nitrogen. The heat shrinkable property and thermal mechanical property of the HDPE sheets have been investigated. It was found that the degree of crosslinking of the irradiated HDPE samples were increased with irradiation dose. Compared with the HDPE containing triallylisocyanurate, the HDPE containing trimethylol propane triacrylate shows a slight increase in crosslinking density. The heat transformation and dimension change of HDPE decreased with increasing radiation dose. The heat shrinkage of the samples increased with increasing annealing temperatures. The thermal resistance of HDPE increased upon the crosslinking of HDPE.

  • PDF

The Effect of Heat Treatment on Biological Response and Mutation Frequency of Gamma Irradiated Rice Seeds (수도종자의 방사선조사에 있어서 열처리의 효과)

  • Chang-Yawl Harn;J. L.Won;Kwang-Tae Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.10
    • /
    • pp.45-50
    • /
    • 1971
  • For the purpose of finding out the effect of heat treatment on biological response and mutation rate, rice seeds were heat treated before and after gamma irradiation. 1. At a dose of 20 KR, pre-irradiation heat treatment showed reduced biological damage and increased mutation rate as compared with non-heat treatment. 2. Mutation frequency was increased in post-treatment of heat shock than in pre-irradiation heat treatment and non-heat treatment. 3. Pre-irradiation heat treatment at 6$0^{\circ}C$ for 30 minutes markedly reduced the biological damage and increased the mutation rate. 4. Mutation spectrum in heat treatment was different from non-treatment.

  • PDF

Effect of gamma irradiation on the critical heat flux of nano-coated surfaces

  • Rahimian, A.;Kazeminejad, H.;Khalafi, H.;Akhavan, A.;Mirvakili, M.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2353-2360
    • /
    • 2020
  • An anodic electrophoretic deposition (EPD) technique is used to create a uniform TiO2 thin film coating on boiling thin steel plates (1.1 mm by 90 mm). All of the effective parameters except time of the EPD method are kept constant. To investigate the effect of gamma irradiation on the critical heat flux (CHF), the test specimens were irradiated in a gamma cell to different doses ranging from 100 to 300 kGy, and then SEM and BET analysis were performed. For each coated specimen, the contact angle and capillary length were measured. The specimens were then tested in a boiling pool for CHF and boiling heat transfer coefficient. It was observed that irradiation significantly decreases the maximum pore diameter while it increases the porosity, pore surface area and pore volume. These surface modifications due to gamma irradiation increased the CHF of the nano-coated surfaces compared to that of the unirradiated surfaces. The heat transfer coefficient (HTC) of the nano-coated surfaces irradiated at 300 kGy increased from 83 to 160 kW/(㎡ K) at 885 kW/㎡ wall heat flux by 100%. The CHF of the irradiated (300 kGy) and unirradiated surfaces are 2035 kW/㎡ and 1583 kW/㎡, respectively, an increase of nearly 31%.

Effect of the Radiation Crosslinking and Heating on the Heat Resistance of Polyvinyl Alcohol Hydrogels (PVA 하이드로겔의 내열특성에 방사선 가교와 열처리가 미치는 효과)

  • Park, Kyoung Ran;Nho, Young Chang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.354-360
    • /
    • 2005
  • Polyvinyl alcohol (PVA) hydrogels were prepared by the irradiation and heating. Irradiation and heating processes were carried out to improve the heat resistance of PVA hydrogels at high temperature. The physical properties such as gel content, degree of swelling and gel strength for the synthesized hydrogels were examined. The structure variations were investigated using the following techniques: differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Gel content and gel strength of the hydrogels were higher when the two steps of irradiation followed by heat treatment were used rather than only with the irradiation. The hydrogels prepared by the irradiation and the two steps had good heat resistance at high temperature.

Study on the Surface Temperature and Laser Heat Conduction by the Computer Algorithm (컴퓨터 알고리즘에 의한 표면온도와 레이저 열전도에 관한 연구)

  • Lee, Young-Wook
    • The Journal of Information Technology
    • /
    • v.9 no.3
    • /
    • pp.67-75
    • /
    • 2006
  • This study deals with the computing the temperature change of surface to the increment of time and diffusivity, the heat flux during irradiation of laser. In addition, the computer algorithm for computing the penetration change of the corresponding surface irradiated is developed. The result of this study shows the possibility to treatment of cancer, abnormal cell and biological tissue during irradiation of laser.

  • PDF

Effects of Gamma-irradiation on Anti-diabetic and Cytotoxic Activities of Heat-treated Mistletoe (Viscum album) (감마선 조사가 열처리 겨우살이의 항당뇨 및 세포독성에 미치는 영향)

  • Park, Jong-Heum;Kim, Su-Min;Sung, Nak-Yun;Song, Du-Sup;Byun, Eui-Baek;Kim, Jae-Kyung;Song, Beom-Seok;Lee, Ju-Woon;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.183-190
    • /
    • 2013
  • Mistletoe (Viscum album) has been widely used as a functional food material for various therapeutic purposes from ancient time. In this study, we examined anti-diabetic and cytotoxic activities of heated-treated mistletoe and the effects of gamma-irradiation on its activities. Heat-treated mistletoe extract was prepared by heating during different time (3, 6, 9 and 12 h) and gamma-irradiated with different doses of 0, 10, 30, 50, 70 and 100 kGy. Heat-treated mistletoe extracts showed a concentration-dependent cytotoxicity on rat insulinoma RINm5F cells and the effect was gradually decreased as heating time increased up to 12 h. 12 h heat-treated extract was no cytotoxic. Gamma-irradiation enhanced the reduction of heat-treated mistletoe-induced cytotoxicity and the decreasing effect was an irradiating dose-dependent. In particular, all of 70 kGy irradiated and heat-treated mistletoe extracts did not showed the cytotoxicity and the effect was comparable to 12 h heat-treated mistletoe extract. Among those extracts, 3 h heat-treated mistletoe extract gradually increased the insulin secreting activity by gamma-irradiation and the effect was the best at 70 kGy, whereas 12 heat-treated extract was no effect. On the test of ${\alpha}$-glucosidase inhibitory activity, 3 h heat-treated mistletoe extract showed the concentration dependent effects and gamma-irradiation induced more activity at 70 kGy, compared to non-irradiated 3 h and 12 h heated mistletoe extracts. These results suggest that the combination of heat treatment and gamma-irradiation might be more effective than only heat-treatment for improving the anti-diabetic activity of mistletoe extract and reducing its cytotoxicity.

Disinfection effects of heat- and cold-treatment and UV-irradiation on campylobacter jejuni (고온 및 저온처리와 자외선조사에 의한 campylobacterjejuni의 살균효과)

  • 김치경;임선희;윤만석;오학식;조민기
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.291-296
    • /
    • 1989
  • Campylobacter jejuni was studied for its disinfection by heat-and cold-treatment and UV-irradiation. When C. jejuni was treated by heat, no viable cell was found after 10 min treatment at $55^{\circ}C$, whereas small fraction of cell population was survived after 60 min treatment at $45^{\circ}C$ and $50^{\circ}C$. When they were treated by cold temperature for 30 days, no cell was survived at -$23^{\circ}C$ but about 4 log of the cells were survived at both temperature of $4^{\circ}C$ and -$40^{\circ}C$. When the organisms were UV-irradiated, thier survival rates were proportionally varied to the distance of irradiation. The scanning electron microscopic studies of C. jejuni cells treated by the disinfecting agents revealed that shapes of thecells were deformed from spiral rod into spherical form. The heat-treated cells showed rough and damaged surface on the scanning electron micrographs. In the heat-treated cells, some proteins of high molecular weight appeared to become accumulated in the electrophoretic analysis. The DNAs extracted from the cells treated with the physical agents showed some differences in agarose gel electrophoresis, comparing those of normal cells.

  • PDF

Sanitation and Quality Improvement of Salted and Fermented Anchovy Sauce by Gamma Irradiation (멸치액젓의 위생적 품질향상을 위한 감마선 조사기술 이용)

  • 김재현;안현주;김정옥;류기형;육홍선;이영남;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1035-1041
    • /
    • 2000
  • Gamma irradiation was used to improve sanitation and quality of salted and fermented anchovy sauce. For commercial production, comparison with currently using sterilization methods, such as micro-filtration and heat treatment were also conducted. Control was prepared without irradiation and sterilization process. Microbiological, physiochemical, and sensory qualities were analyzed to observe the Quality changes during the storage. Irradiation at 5 kGy or above and micro-filtration process completely eliminated microorganisms detected in this study As irradiation dose increased, the color appeared brighter and irradiation at 5 kGy or above showed similar color L-value to that of sample treated with microfiltration. The color L, a, b-value of heat-treated sample always showed lower. The pH, salinity, and viscosity were sustained during storage. From the results of sensory evaluation, the samples treated with gamma irradiation and microfiltration obtained better scores than control or heat-sterilized. Gamma irradiation to salted and fermented anchovy sauce presented the best quality products among different sterilizing methods, especially at 5 kGy dose. Therefore, gamma irradiation can be successfully applied to commercial large scale production as a new sanitation technology with improved quality.

  • PDF

Effect of Electron Irradiation on the Structural Electrical and Optical Properties of ITO/ZnO Thin Films (전자빔 조사에너지에 따른 ITO/ZnO 적층박막의 구조적, 전기적, 광학적 특성 변화)

  • Kim, Sun-Kyung;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.5
    • /
    • pp.225-229
    • /
    • 2014
  • The influence of electron irradiation energy(eV) on the structural, electrical and optical properties of ITO/ZnO bi-layered films prepared with RF magnetron sputtering has been investigated. The ITO/ZnO show the lowest resistivity of $2.8{\times}10^{-4}{\Omega}cm$. The optical transmittance in a visible wave length region also increased with the electron irradiation energy. The film irradiated at 900 eV shows 82---- of optical transmittance in this study. By comparison of figure of merit, it was observed the optical transmittance and electrical resistivity of the films were dependent on the electron irradiation energy and optoelectrical performance of ITO/ZnO film is improved with electron irradiation.