Effect of the Radiation Crosslinking and Heating on the Heat Resistance of Polyvinyl Alcohol Hydrogels

PVA 하이드로겔의 내열특성에 방사선 가교와 열처리가 미치는 효과

  • Park, Kyoung Ran (Radiation Application Division, Korea Atomic Energy Research Institute) ;
  • Nho, Young Chang (Radiation Application Division, Korea Atomic Energy Research Institute)
  • 박경란 (한국원자력연구소 방사선이용연구부) ;
  • 노영창 (한국원자력연구소 방사선이용연구부)
  • Received : 2004.11.15
  • Accepted : 2005.03.08
  • Published : 2005.06.10

Abstract

Polyvinyl alcohol (PVA) hydrogels were prepared by the irradiation and heating. Irradiation and heating processes were carried out to improve the heat resistance of PVA hydrogels at high temperature. The physical properties such as gel content, degree of swelling and gel strength for the synthesized hydrogels were examined. The structure variations were investigated using the following techniques: differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Gel content and gel strength of the hydrogels were higher when the two steps of irradiation followed by heat treatment were used rather than only with the irradiation. The hydrogels prepared by the irradiation and the two steps had good heat resistance at high temperature.

본 연구에서는, 방사선 가교와 열처리에 의해 내열특성을 가진 polyvinyl alcohol (PVA) 수화겔을 제조하였다. 제조된 수화겔의 겔화율, 팽윤도와 겔강도 같은 기계적 특성을 측정하였다. DSC와 XRD를 이용하여 구조적 변화를 알아보았다. 수화겔의 겔화율과 겔강도는 방사선 조사 후에 열처리 과정을 했을 경우에 방사선 조사만 했을 때보다 높은 값을 보였다. 또한, 방사선 조사한 수화겔과 방사선 조사 후에 열처리 과정을 한 수화겔이 고온에서의 내열특성이 우수하였다.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. F. H. Silver and C. Doillon, Biocompatibility. Interactions of Biological and Implantable Materials, VCH Publ. Inc., New York (1989)
  2. N. A. Peppas, Hydrogels in Medicine and Pharmacy, ed. Boca Raton, 1, CRC Press. Inc., Florida (1986, 1987)
  3. B. D. Ralner, Biomedical Applications of Hydrogels: Review and Critical Appraisal, ed. D. F. Williams, 145, CRC Press, Boca Raton (1981)
  4. V. Kudela, Polymers: Biomaterials and Medical Applications, ed. J. I. Kroschwitz, 228, John Wiley & Sons, New York (1989)
  5. J. M. Rosiak, J. Controlled Release, 31, 9 (1994) https://doi.org/10.1016/0168-3659(94)90246-1
  6. K. R. Park and Y. C. Nho, Polymer(Korea), 25, 728 (2001)
  7. Y. C. Nho and K. R. Park, J. Appl. Polym. Sci., 85, 1787 (2002) https://doi.org/10.1002/app.10812
  8. K. R. Park and Y. C. Nho, Polymer(Korea), 26, 792 (2002)
  9. K. R. Park and Y. C. Nho, Radiat. Phys. Chem., 67, 361 (2003) https://doi.org/10.1016/S0969-806X(03)00067-7
  10. K. R. Park and Y. C. Nho, J. Appl. Polym. Sci., 91, 1612 (2004) https://doi.org/10.1002/app.13299
  11. K. Burczak, T. Fujisato, M. Hatada, and Y. Ikada, Biomaterials., 15, 231 (1994) https://doi.org/10.1016/0142-9612(94)90072-8
  12. M. Nambu, Rubber-like poly(vinyl alcohol) gel, Polym. Applic., 32, 523 (1983)
  13. S. H. Hyon and Y. Ikada, Radiation crosslinking of biomedical hydrogels, 6th Symp. on Radiation Chemistry, 657, Balatomszeplak, Hungary (1986)
  14. T. Hirai, High Polym., Japan, 40, 524 (1991)
  15. J. W. K. Sptizen, Ph.D. Dissertation, Twente University, The Netherlands (1988)
  16. C. Tranquilan-Aranilla, F. Yoshii, A. M. Dela Rosa, and K. Makuuchi, Radiat. Phys. Chem., 55, 127 (1999) https://doi.org/10.1016/S0969-806X(98)00317-X
  17. L. F. Miranda, A. B. Lugao, L. D. B. Machado, and L. V. Ramanathan, Radiat. Phys. Chem., 55, 709 (1999) https://doi.org/10.1016/S0969-806X(99)00216-9
  18. M. Krumova, D. Lopez, R. Benavente, C. Mijangos, and J. M. Perena, Polymer, 41, 9265 (2000) https://doi.org/10.1016/S0032-3861(00)00287-1
  19. R. L. Clough and S. W. Shalaby, Radiation effects on polymers, 271, Maple Press. Inc., York, PA (1990)
  20. F. Yoshii, K. Makuuchi, D. Darwis, T. Iriawan, M. T. Razzak, and J. M. Rosiak, Radiat. Phys. Chem., 46, 169 (1995) https://doi.org/10.1016/0969-806X(95)00008-L