DOI QR코드

DOI QR Code

Effect of gamma irradiation on the critical heat flux of nano-coated surfaces

  • Rahimian, A. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Kazeminejad, H. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Khalafi, H. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Akhavan, A. (Nuclear Science and Technology Research Institute (NSTRI)) ;
  • Mirvakili, M. (Nuclear Science and Technology Research Institute (NSTRI))
  • Received : 2018.11.18
  • Accepted : 2020.04.03
  • Published : 2020.10.25

Abstract

An anodic electrophoretic deposition (EPD) technique is used to create a uniform TiO2 thin film coating on boiling thin steel plates (1.1 mm by 90 mm). All of the effective parameters except time of the EPD method are kept constant. To investigate the effect of gamma irradiation on the critical heat flux (CHF), the test specimens were irradiated in a gamma cell to different doses ranging from 100 to 300 kGy, and then SEM and BET analysis were performed. For each coated specimen, the contact angle and capillary length were measured. The specimens were then tested in a boiling pool for CHF and boiling heat transfer coefficient. It was observed that irradiation significantly decreases the maximum pore diameter while it increases the porosity, pore surface area and pore volume. These surface modifications due to gamma irradiation increased the CHF of the nano-coated surfaces compared to that of the unirradiated surfaces. The heat transfer coefficient (HTC) of the nano-coated surfaces irradiated at 300 kGy increased from 83 to 160 kW/(㎡ K) at 885 kW/㎡ wall heat flux by 100%. The CHF of the irradiated (300 kGy) and unirradiated surfaces are 2035 kW/㎡ and 1583 kW/㎡, respectively, an increase of nearly 31%.

Keywords

References

  1. K. Hadad, A. Rahimian, M.R. Nematollahi, Numerical study of single and twophase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor, Ann. Nucl. Eng. 60 (2013) 287-294, https://doi.org/10.1016/j.anucene.2013.05.017.
  2. H. Saadati, K. Hadad, A. Rabiee, Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid, Nucl. Eng. Technol. 50 (5) (2018) 639-647, https://doi.org/10.1016/j.net.2018.01.015.
  3. I.C. Bang, Effects of Al2O3 nanoparticles deposition on critical heat flux of R-123 in flow boiling heat transfer, Nucl. Eng. Technol. 47 (4) (2015) 398-406, https://doi.org/10.1016/j.net.2015.04.003.
  4. S. Jun, J. Kim, D. Son, H.Y. Kim, S.M. You, Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings, Nucl. Eng. Technol. 48 (4) (2016) 932-940, https://doi.org/10.1016/j.net.2016.02.018.
  5. P.J. Berenson, Experiments on pool-boiling heat transfer, Int. J. Heat Mass Tran. 5 (1962) 985-999, https://doi.org/10.1016/0017-9310(62)90079-0.
  6. R.L. Webb, The evolution of enhanced surface geometries for nucleate boiling, Heat Tran. Eng. 2 (3-4) (1981) 46-69, https://doi.org/10.1080/01457638108962760.
  7. C. Lee, H. Kim, H.S. Ahn, M.H. Kim, J. Kim, Micro/nanostructure evolution of zircaloy surface using anodization technique: application to nuclear fuel cladding modification, Appl. Surf. Sci. 258 (22) (2012) 8724-8731, https://doi.org/10.1016/j.apsusc.2012.05.081.
  8. V. Khanikar, I. Mudawar, T. Fisher, Effects of carbon nanotube coating on flow boiling in a micro-channel, Int. J. Heat Mass Tran. 52 (15) (2009) 3805-3817, https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.007.
  9. J.A. Byrne, B.R. Eggins, N.M.D. Brown, B. McKinney, M. Rouse, Immobilisation of TiO2 powder for the treatment of polluted water, Appl. Catal. B Environ. 17 (1-2) (1998) 25-36, https://doi.org/10.1016/S0926-3373(97)00101-X.
  10. N. Zuber, Hydrodynamic Aspects of Boiling Heat Transfer, AECU-4439, Atomic Energy Commission, 1959.
  11. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl. Phys. Lett. 89 (15) (2006), 153107. https://doi.org/10.1063/1.2360892
  12. S.G. Kandlikar, A Theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Tran. 123 (2001) 1071-1079, https://doi.org/10.1115/1.1409265.
  13. J.M. Ramilison, P. Sadasivan, J.H. Lienhard, Surface factors influencing burnout on flat heaters, J. Heat Tran. 114 (1992) 1. Transactions of the ASME (American Society of Mechanical Engineers), Series C)(United States).
  14. M.M. Rahman, E. Olceroglu, M. McCarthy, Role of wickability on the critical heat flux of structured superhydrophilic surfaces, Langmuir 30 (37) (2014) 11225-11234, https://doi.org/10.1021/la5030923.
  15. R. Furberg, B. Palm, S. Li, M. Toprak, M. Muhammed, The use of a nano-and microporous surface layer to enhance boiling in a plate heat exchanger, J. Heat Tran. 131 (2009), 10, 101010.
  16. D. Hanaor, M. Michelazzi, P. Veronesi, C. Leonelli, M. Romagnoli, C. Sorrell, Anodic aqueous electrophoretic deposition of titanium dioxide using carboxylic acids as dispersing agents, J. Eur. Ceram. Soc. 31 (6) (2011) 1041-1047, https://doi.org/10.1016/j.jeurceramsoc.2010.12.017.
  17. S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample Experiments, Mech. Eng. P. 3 (January 1953).
  18. H.C. Hamaker, Formation of deposition by electrophoresis, Trans. Faraday Soc. 36 (1940) 279-283. https://doi.org/10.1039/tf9403500279
  19. W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, J. Heat Tran. - Trans. ASME 74 (1952) 969-976. http://hdl.handle.net/1721.1/61431.
  20. C.K. Huang, C.W. Lee, C.K. Wang, Boiling enhancement by TiO2 nanoparticle deposition, Int. J. Heat Mass Tran. 54 (23-24) (2011) 4895-4903, https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.001.
  21. H.D. Kim, M.H. Kim, Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Appl. Phys. Lett. 91 (1) (2007), 014104, https://doi.org/10.1063/1.2754644.
  22. C.H. Bosanquet, Lv, On the flow of liquids into capillary tubes, The London, Edinburgh, and Dublin Phil. Mag. J. Sci 45 (267) (1923) 525-531, https://doi.org/10.1080/14786442308634144.
  23. M. Tetreault-Friend, R. Azizian, M. Bucci, T. McKrell, J. Buongiorno, M. Rubner, R. Cohen, Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers, Appl. Phys. Lett. 108 (2016) 243102, https://doi.org/10.1063/1.4954012.