References
- K. Hadad, A. Rahimian, M.R. Nematollahi, Numerical study of single and twophase models of water/Al2O3 nanofluid turbulent forced convection flow in VVER-1000 nuclear reactor, Ann. Nucl. Eng. 60 (2013) 287-294, https://doi.org/10.1016/j.anucene.2013.05.017.
- H. Saadati, K. Hadad, A. Rabiee, Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid, Nucl. Eng. Technol. 50 (5) (2018) 639-647, https://doi.org/10.1016/j.net.2018.01.015.
- I.C. Bang, Effects of Al2O3 nanoparticles deposition on critical heat flux of R-123 in flow boiling heat transfer, Nucl. Eng. Technol. 47 (4) (2015) 398-406, https://doi.org/10.1016/j.net.2015.04.003.
- S. Jun, J. Kim, D. Son, H.Y. Kim, S.M. You, Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings, Nucl. Eng. Technol. 48 (4) (2016) 932-940, https://doi.org/10.1016/j.net.2016.02.018.
- P.J. Berenson, Experiments on pool-boiling heat transfer, Int. J. Heat Mass Tran. 5 (1962) 985-999, https://doi.org/10.1016/0017-9310(62)90079-0.
- R.L. Webb, The evolution of enhanced surface geometries for nucleate boiling, Heat Tran. Eng. 2 (3-4) (1981) 46-69, https://doi.org/10.1080/01457638108962760.
- C. Lee, H. Kim, H.S. Ahn, M.H. Kim, J. Kim, Micro/nanostructure evolution of zircaloy surface using anodization technique: application to nuclear fuel cladding modification, Appl. Surf. Sci. 258 (22) (2012) 8724-8731, https://doi.org/10.1016/j.apsusc.2012.05.081.
- V. Khanikar, I. Mudawar, T. Fisher, Effects of carbon nanotube coating on flow boiling in a micro-channel, Int. J. Heat Mass Tran. 52 (15) (2009) 3805-3817, https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.007.
- J.A. Byrne, B.R. Eggins, N.M.D. Brown, B. McKinney, M. Rouse, Immobilisation of TiO2 powder for the treatment of polluted water, Appl. Catal. B Environ. 17 (1-2) (1998) 25-36, https://doi.org/10.1016/S0926-3373(97)00101-X.
- N. Zuber, Hydrodynamic Aspects of Boiling Heat Transfer, AECU-4439, Atomic Energy Commission, 1959.
- S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids, Appl. Phys. Lett. 89 (15) (2006), 153107. https://doi.org/10.1063/1.2360892
- S.G. Kandlikar, A Theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Tran. 123 (2001) 1071-1079, https://doi.org/10.1115/1.1409265.
- J.M. Ramilison, P. Sadasivan, J.H. Lienhard, Surface factors influencing burnout on flat heaters, J. Heat Tran. 114 (1992) 1. Transactions of the ASME (American Society of Mechanical Engineers), Series C)(United States).
- M.M. Rahman, E. Olceroglu, M. McCarthy, Role of wickability on the critical heat flux of structured superhydrophilic surfaces, Langmuir 30 (37) (2014) 11225-11234, https://doi.org/10.1021/la5030923.
- R. Furberg, B. Palm, S. Li, M. Toprak, M. Muhammed, The use of a nano-and microporous surface layer to enhance boiling in a plate heat exchanger, J. Heat Tran. 131 (2009), 10, 101010.
- D. Hanaor, M. Michelazzi, P. Veronesi, C. Leonelli, M. Romagnoli, C. Sorrell, Anodic aqueous electrophoretic deposition of titanium dioxide using carboxylic acids as dispersing agents, J. Eur. Ceram. Soc. 31 (6) (2011) 1041-1047, https://doi.org/10.1016/j.jeurceramsoc.2010.12.017.
- S.J. Kline, F.A. McClintock, Describing uncertainties in single-sample Experiments, Mech. Eng. P. 3 (January 1953).
- H.C. Hamaker, Formation of deposition by electrophoresis, Trans. Faraday Soc. 36 (1940) 279-283. https://doi.org/10.1039/tf9403500279
- W.M. Rohsenow, A method of correlating heat transfer data for surface boiling of liquids, J. Heat Tran. - Trans. ASME 74 (1952) 969-976. http://hdl.handle.net/1721.1/61431.
- C.K. Huang, C.W. Lee, C.K. Wang, Boiling enhancement by TiO2 nanoparticle deposition, Int. J. Heat Mass Tran. 54 (23-24) (2011) 4895-4903, https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.001.
- H.D. Kim, M.H. Kim, Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids, Appl. Phys. Lett. 91 (1) (2007), 014104, https://doi.org/10.1063/1.2754644.
- C.H. Bosanquet, Lv, On the flow of liquids into capillary tubes, The London, Edinburgh, and Dublin Phil. Mag. J. Sci 45 (267) (1923) 525-531, https://doi.org/10.1080/14786442308634144.
- M. Tetreault-Friend, R. Azizian, M. Bucci, T. McKrell, J. Buongiorno, M. Rubner, R. Cohen, Critical heat flux maxima resulting from the controlled morphology of nanoporous hydrophilic surface layers, Appl. Phys. Lett. 108 (2016) 243102, https://doi.org/10.1063/1.4954012.