DOI QR코드

DOI QR Code

Feasibility study of SiPM based scintillation detector for dual-energy X-ray absorptiometry

  • Park, Chanwoo (Department of Radiation Convergence Engineering, College of Health Science, Yonsei University) ;
  • Song, Hankyeol (Department of Radiation Convergence Engineering, College of Health Science, Yonsei University) ;
  • Joung, Jinhun (Nucare. Inc.) ;
  • Kim, Yongkwon (Nucare. Inc.) ;
  • Kim, Kyu Bom (Department of Neurosurgery, Yonsei University College of Medicine) ;
  • Chung, Yong Hyun (Department of Radiation Convergence Engineering, College of Health Science, Yonsei University)
  • Received : 2020.02.06
  • Accepted : 2020.03.30
  • Published : 2020.10.25

Abstract

Dual-energy x-ray absorptiometry (DXA) is the noninvasive method to diagnose osteoporosis disease characterized by low bone mass and deterioration of bone tissue. Many global companies and research groups have developed the various DXA detectors using a direct photon-counting detector such as a cadmium zinc telluride (CZT) sensor. However, this approach using CZT sensor has some drawback such as the limitation of scalability by high cost and the loss of efficiency due to the requirement of a thin detector. In this study, a SiPM based DXA system was developed and its performance evaluated experimentally. The DXA detector was composed of a SiPM sensor coupled with a single LYSO scintillation crystal (3 × 3 × 2 ㎣). The prototype DXA detector was mounted on the dedicated front-end circuit consisting of a voltage-sensitive preamplifier, pulse shaping amplifier and constant fraction discriminator (CFD) circuit. The SiPM based DXA detector showed the 34% (at 59 keV) energy resolution with good BMD accuracy. The proposed SiPM based DXA detector showed the performance comparable to the conventional DXA detector based on CZT.

Keywords

References

  1. Glen M. Blake, Ignac Fogelman, The role of DXA bone density scans in the diagnosis and treatment of osteoporosis, Postgrad. Med. 83 (2007) 509-517. https://doi.org/10.1136/pgmj.2007.057505
  2. Yong Jun Choi, Byung Joo Lee, Hyun Chae Lim, Yoon-Sok Chung, Cross-calibration of iDXA and prodigy on spine and femur scans in Korean adults, J. Clin. Densitom. 12 (4) (2009) 450-455. https://doi.org/10.1016/j.jocd.2009.08.001
  3. Centers for Disease Control and Prevention National Center for Health Statistics, Dual Energy X-Ray Absorptiometry (DXA) Procedures Manual, 2007. Available from: http://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_dexa.pdf.
  4. Wear James, Michael Buchholz, Randall K. Payne, Darrell Gorsuch, Bisek Joseph, David L. Ergun, Joe Grosholz, Ron Falk, CZT detector for dualenergy x-ray absorptiometry (DEXA), Proc. SPIE 4142, in: International Symposium on Optical Science and Technology, DEC 18, 2000. San Diego, CA, United States.
  5. R.B. Mazess1, J.A. Hanson1, R. Payn-1, R. Nord, M. Wilson, Axial and total-body bone densitometry using a narrow-angle fan-beam, Osteoporos. Int. 11 (2000) 158-166. https://doi.org/10.1007/PL00004178
  6. K. Iniewski, CZT detector technology for medical imaging, J. Inst. Met. 9 (C11001) (2014).
  7. Andrea Zappettini, Laura Marchini, Mingzheng Zha, Giacomo Benassi, Nicola Zambelli, Davide Calestani, Lucio Zanotti, Enos Gombia, Roberto Mosca, Massimiliano Zanichelli, Maura Pavesi, Natalia Auricchio, Ezio Caroli, Growth and characterization of CZT crystals by the vertical bridgman method for Xray detector applications, IEEE Trans. Nucl. Sci. 58 (5) (2011) 2352-2356. https://doi.org/10.1109/TNS.2011.2163643
  8. R.B. James, T.E. Schelinger, J. Lund, M. Schieber, T.E. Schelinger, R.B. James, Semiconductors for Room Temperature Nuclear Detector Applications, Academic Press, New York, 1996.
  9. Jennifer Prekeges, Nuclear Medicine Instrumentation, Jones & Bartlett Publishers, 2010.
  10. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantzerov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, S. Smirnov, Silicon photomultiplier and its possible applications, Nucl. Instrum. Methods Phys. Res. A. 504 (2003) 48-52. https://doi.org/10.1016/S0168-9002(03)00749-6
  11. M. Moszynski, M. Szawlowski, M. Kapusta, M. Balcerzyk, Avalanche photodiodes in scintillation detection, Nucl. Instrum. Methods Phys. Res. A. 497 (2003) 226-233. https://doi.org/10.1016/S0168-9002(02)01916-2
  12. E.A. Babichev, S.E. Baru, D.N. Grigoriev, V.P. Oleynikov, V.V. Porosev, G.A. Savinov, Stephane Callier, SiPM based photon counting detector for scanning digital radiography, J. Inst. Met. 10 (C03002) (2015).
  13. P.K. Lightfoot, G.J. Barker, K. Mavrokoridis, Y.A. Ramachers, N.J.C. Spooner, Characterisation of a silicon photomultiplier device for applications in liquid argon based neutrino physics and dark matter searches, J. Inst. Met. 3 (P10001) (2008).
  14. Hamamatsu photonics, MPPC [Internet], https://www.hamamatsu.com/ resources/pdf/ssd/mppc_kapd9005e.pdf, 2017.
  15. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 1999.
  16. D. Pearson, S.A. Cawte, D.J. Green, A comparison of phantoms for crosscalibration of lumbar spine DXA, Osteoporos. Int. 13 (2002) 948-954. https://doi.org/10.1007/s001980200132
  17. National Instruments, NI PXI-1033 User Manual [Internet], 2012. Available from, http://www.ni.com/pdf/manuals/371991c.pdf.
  18. National Instruments, NI 6143 Specifications [Internet], 2004. Available from, http://www.ni.com/pdf/manuals/370835a.pdf.
  19. Nathan L. Toner, Ph D Thesis, Data Driven Low-Bandwidth Intelligent Control of a Jet Engine Combustor, Purdue University, 2015.
  20. Alan Owens, Semiconductor Radiation Detectors, CRC Press, 2019.
  21. John H. Hubbell, Stephen M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest. No. PB- 95-220539/XAB; NISTIR-5632, National Inst. of Standards and Technology-PL, Gaithersburg, MD, 1995 (United States). Ionizing Radiation Div.
  22. K. Harry, Genant, Giuseppe Guglielmi, Michael Jergas, Bone Densitometry and Osteoporosis, Springer Berlin Heidelberg, 2011.
  23. Glen M. Blake, Heinz W. Wahner, Ignac Fogelman, Evaluation of Osteoporosis, Taylor & Francis, 1998.
  24. G.M. Blake, I. Fogelman, Technical principles of dual energy X-ray absorptiometry, Semin. Nucl. Med. 27 (3) (1997) 210-228. https://doi.org/10.1016/S0001-2998(97)80025-6
  25. Dong-Hoon Lee, Chanwoo Park, Cheol-Ha Baek, Chaeyeong Lee, Seung-Jae Lee, Hankyeol Song, Yong Hyun Chung, Simulation of a gamma-ray computed tomography.
  26. D. Philippov, E. Popova, S. Vinogradov, A. Stifutkin, A. Pleshko, S. Klemin, A. Ilyin, V. Belyaev, D. Besson, M. Vandyсhev, Development of SiPM-based Xray counting scanner for human inspection, IEEE Trans. Nucl. Sci. 65 (8) (2018) 2013-2020. https://doi.org/10.1109/TNS.2018.2795251
  27. S. Baim, C.R. Wilson, E.M. Lewiecki, M.M. Luckey, R.W. Downs Jr., B.C. Lentle, Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry, J. Clin. Densitom. 8 (4) (2005) 371-378. https://doi.org/10.1385/JCD:8:4:371
  28. G.M. Blake, D.B. McKeeney, S.C. Chhaya, P.J. Ryan, I. Fogelman, Dual energy Xray absorptiometry: the epects of beam hardening on bone density measurements, Med. Phys. 19 (2) (1992) 459-465. https://doi.org/10.1118/1.596834
  29. J.M. Soriano, E. Ioannidou, J. Wang, J.C. Thornton, M.N. Horlick, D. Gallagher, S.B. Heymsfield, R.N. Pierson, Pencil-beam vs fan-beam dual-energy X-ray absorptiometry comparisons across four systems, J. Clin. Densitom. 7 (3) (2004) 281-289. https://doi.org/10.1385/JCD:7:3:281
  30. G.M. Blake, J.C. Parker, F.M.A. Buxton, I. Fogelman, Dual x-ray absorptiometry: a comparison between fan beam and pencil beam scans, Br. J. Radiol. 66 (790) (1993) 902-906. https://doi.org/10.1259/0007-1285-66-790-902

Cited by

  1. Rotatable LYSO-GAPD DEXA detector for providing improved spatial resolution vol.16, pp.12, 2021, https://doi.org/10.1088/1748-0221/16/12/p12012