• Title/Summary/Keyword: heat aging test

Search Result 164, Processing Time 0.032 seconds

Development of Preventive Diagnosis Techniques for Transformer Oil by Capacitive Sensor (전기용량형 센서를 이용한 변압기 절연유 열화진단용 예방진단기법 개발)

  • Kim, Ju-Han;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2061_2062
    • /
    • 2009
  • Within serviced period of time in transformer, thermal stress is the most influential parameter affecting the aging behavior of an insulation system. The thermal stress on the insulation system may occur from operation in a high temperature environment due to Joule's heat at winding coils. This paper describes a development of capacitive sensor and preventive diagnosis techniques for electrical insulating oil, widely used for power and distribution transformer. To survey the dielectric properties of the virgin and used mineral insulating oil, we utilized the highly precise measuring system of KRISS. And the results were used to determine the design factors of the sensor. To evaluate diagnosis by the sensor, we performed accelerated aging test about insulating oils. The condition of aged specimens were investigated by measurements of relative permittivity i.e. capacitance change by capacitive sensor.

  • PDF

Microstructures and Mechanical Properties of DA Alloy 718 (직접시효 처리된 Alloy718 합금의 미세조직과 기계적 특성)

  • Eum C. Y.;Yeom J. T.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.222-225
    • /
    • 2004
  • Alloy 718 is normally used for the stationary and rotating parts of gas turbines due to its excellent combination of high temperature mechanical properties, formability and weldability. The mechanical properties of the Alloy 718 depend very much on grain size, as well as the strengthening phases, ${\gamma}'\;and\;{\gamma}'$. Direct aging is normally used to enhance tensile strengths at high temperatures. The grain structure of the superalloy components is mainly controlled during thermo-mechanical process by the dynamic, meta-dynamic recrystallization and grain growth. In this study, the influence of grain structure and heat treatment on tensile properties of direct-aged Alloy 718 was evaluated.

  • PDF

Useful lifetime prediction of rail-pad by using the accelerated heat aging test (가속 열노화시험을 통한 레일패드 사용수명예측)

  • Woo, Chang-Su;Park, Hyun-Sung;Choi, Byung-Ik;Yang, Sin-Chu;Jang, Sung-Yep;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1010-1015
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

  • PDF

A Study on the Fracture Toughness of Al-Si-Cu-Mg Cast Alloy (주조용(鑄造用) Al-Si-Cu-Mg계(系) 합금(合金)의 파괴인성(破壞靭性)에 관한 연구(硏究))

  • Ma, Dong-Jun;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.7 no.2
    • /
    • pp.114-121
    • /
    • 1987
  • In order to determine the plane strain fracture toughness of Al-Si-Cu-Mg alloy castings, solution heat treatments have been conducted at $530^{\circ}C$ for 8hr and aged for 10hr at $145^{\circ}C$, $160^{\circ}C$ and $175^{\circ}C$. Effects of aging treatment and of Si contents on the fracture toughness have been investigated by a three point loaded bend test, using the artificial notch. The results obtained are as follows; 1) The fracture toughness is appreciably affected by the aging treatment temperature and Si contents. The specimen aged for 10hr at $145^{\circ}C$ has the highest fracture toughness. 2) Increasing Si contents from 5% to 9% results in decrease of fracture toughness. 3) Increasing the aging temperature and Si contents, C.O.D. value was decreased. The specimen aged for 10hr at $145^{\circ}C$ has the highest C.O.D. value. 4) Dimple patterns were observed in the specimens of containing under 7% Si, while mixed cleavage-dimple patterns in those of over 8% Si.

  • PDF

Stochastic Estimation of Acoustic Impedance of Glass-Reinforced Epoxy Coating

  • Kim, Nohyu;Nah, Hwan-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.119-127
    • /
    • 2014
  • An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy (극저온 열처리 공정이 6061 알루미늄 합금의 잔류응력과 인장특성에 미치는 영향)

  • Park, Kijung;Ko, Dea Hoon;Kim, Byung Min;Lim, Hak Jin;Lee, Jung Min;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the $sin^2{\psi}$ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at $175^{\circ}C$. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.

Influence of dynamic strain aging on material strength behavior of virgin and service-exposed Gr.91 Steel (신재 및 가동이력 Gr.91강의 재료강도 거동에 미치는 동적변형시효의 영향)

  • Ki-Ean Nam;Hyeong-Yeon Lee;Jae-Hyuk Eoh;Hyungmo Kim;Hyun-Uk Hong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.66-74
    • /
    • 2024
  • This study investigates the effects of temperatures and strain rates on the strength and ductility of Gr.91 (ASME Grade 91) steel which is widely being used as a heat-resistant material in Generation IV nuclear and super critical thermal power plants. The tensile behavior of modified 9Cr-1Mo (Gr.91) steel was studied for the three strain rates of 6.67×10-5/s, 6.67×10-4/s and 6.67×10-3/s over the temperature range from room temperature (RT) to 650℃. Experimental results showed that at specific combinations of temperatures (300~400℃) and strain rates, serrations appeared in the stress-strain curves. Concurrently, abnormal behaviors such as a plateau in yield strength and tensile strength, a minimum in ductility and negative strain rate sensitivity were observed. These phenomena were analyzed as significant characteristics of dynamic strain aging (DSA). Since this abnormal behavior in Gr.91 steel affects the material strength, it is judged that a correlation analysis between DSA and material strength should be crucial in the design and integrity evaluation of Gr. 91 steel pressure vessel and piping subjected to high-temperature loading.

A Study on the Safety of Organic Compound Type Thermal Fuse (유기물가용체형 온도퓨우즈의 안전성에 관한 연구)

  • 황명환;정영식
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 1996
  • To protect the damages or the disasters caused by overheating of industrial electric equipments or electric home appliances, a temperature sensitive thermal fuse is generally used in those equipments. Thermal fuses cutoff the current flow when the temperature of the electric equipments are abnormally overheated and over the certain temperature. Therefore thermal fuse is one of the most important elements in the sense of safety. Thermal fuses are classified into two types according to thermally sensitive materials, a low temperature melting alloy and an organic chemical compound. Domestic products of thermal fuses are now only with an organic chemical compound. Domestic products tested by using cutoff test and aging test etc. are satisfied UL specification. It's shown that the accuracy and the precision of the domestic products are as good as those of the overseas products obtained UL mark. However, some of domestic products show the reclosing problem which is mainly related the safety. This problem should be solved to make the reliable thermal fuses. In this paper, our Interest is to find out the causes of reclosing. In the comparison between thermally sensitive materials occurred reclosing and those occurred no reclosing, the test effects show that the characteristics of emitting heat and absorbing heat are different.

  • PDF

A study on the Microstructure and Mechanical Properties of Two-Phase (($NiAl+Ni_3Al$) 2상 합금의 미세 조직과 기계적 특성에 관한 연구)

  • Lee, Jong-Hun;Choe, Byeong-Hak;Lee, Nam-Jin;Kim, Hak-Min;Lee, Jin-Hyeong
    • 연구논문집
    • /
    • s.24
    • /
    • pp.161-174
    • /
    • 1994
  • The Ni-Al intermetallic compound that has the greatest potential to be commercialized shows the high ductility at room temperature with the addition of boron, but has extremely low ductility at high temperature and oxidation environment. On this research work, the changes of microstructure and compressive fracture properties were studied in ($NiAl+Ni_3Al$) two-phase alloys. The precipitation behavior of $Ni_3Al$ after solution treatment at $1300^\circC$ for 14hrs and aging treatment at $800^{\circ}C$ for 14hrs was varied with Al content in ($NiAl+Ni_3Al$) two-phase alloys. These microstructure could be modified dramatically by suitable heat treatments. Martensite or martensite plus $Ni_3Al$ microstructure was obtained upon oil quenching from $1300^\circC$. Aging of Martensite at $800^\circC$ resulted in the $Ni_3Al$ plus NiAl phase. The compressive fracture strength and compressive fracture strain were improved by the $Ni_3Al$ plus NiAl phase mixtures at room temperature and $1100^\circC$. Microcracks are observed mostly in the region of NiAl and the interface of $NiAl-Ni_3Al$ phase after compressive test at room temperature. In the case of high temperature compressive test, microcracks are formed in the region of $Ni_3Al$ phase.

  • PDF